import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from torch import optim
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
# 构建模型(简单的卷积神经网络)
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2) # 卷积
self.conv2 = nn.Conv2d(6, 16, 5)
# Linear(in_feactures(输入的二维张量大小), out_feactures)
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) # 最后输出10个类
def forward(self, x):
# 激活函数
out = F.relu(self.conv1(x))
# max_pool2d(input, kernel_size(卷积核), stride(卷积核步长)=None, padding=0, dilation=1, ceil_mode(空间输入形状)=False, return_ind