本节主要说明链式法则,即多维空间中,可导函数的复合也是可导的。Theorem 7.1是本节的主要定理。Corollary 7.2说明CrC^rCr类函数的复合也是CrC^rCr类。Theorem 7.3是多维空间的均值定理。Theorem 7.4说明多维空间下反函数定理也成立,但是反函数的导数变为原函数导数的逆矩阵,由此可知,反函数可导需要原函数导数矩阵非奇异。
####Exercises
Exercise 1. Let f:R3→R2f:\mathbf{R}^3\to\mathbf{R}^2f:R3→R2 satisfy the condition f(0)=(1,2)f(\mathbf{0})=(1,2)f(0)=(1,2) and
Df(0)=[123001]Df(\mathbf{0})=\begin{bmatrix}1&2&3\\0&0&1\end{bmatrix}Df(0)=[102031]
Let g:R2→R2g:\mathbf{R}^2\to\mathbf{R}^2g:R2→R2 be defined by the equation
g(x,y)=(x+2y+1,3xy)g(x,y)=(x+2y+1,3xy)g(x,y)=(x+2y+1,3xy)
Find D(g∘f)(0)D(g\circ f)(\mathbf{0})D(g∘f)(0).
Solution: We first have
Dg(x,y)=[123y3x],Dg(1,2)=[1263]Dg(x,y)=\begin{bmatrix}1&2\\3y&3x\end{bmatrix},Dg(1,2)=\begin{bmatrix}1&2\\6&3\end{bmatrix}Dg(x,y)=[13y23x],Dg(1,2)=[1623]
then by the chain rule
D(g∘f)(0)=Dg(f(0))⋅Df(0)=Dg(1,2)⋅Df(0)=[1263][123001]=[12561221]\begin{aligned}D(g\circ f)(\mathbf{0})&=Dg(f(\mathbf{0})){\cdot}Df(\mathbf{0})=Dg(1,2){\cdot}Df(\mathbf{0})\\&=\begin{bmatrix}1&2\\6&3\end{bmatrix}\begin{bmatrix}1&2&3\\0&0&1\end{bmatrix}=\begin{bmatrix}1&2&5\\6&12&21\end{bmatrix}\end{aligned}D(g∘f)(0)=Dg(f(0))⋅Df(0)=Dg(1,2)⋅Df(0)=[1623][102031]=[16212521]
Exercise 2. Let f:R2→R3f:\mathbf{R}^2\to\mathbf{R}^3f:R2→R3 and g:R3→R2g:\mathbf{R}^3\to\mathbf{R}^2g:R3→R2 be given by the equations
f(x)=(e2x1+x2,3x2−cosx1,x12+x2+2)f(x)=(e^{2x_1+x_2},3x_2-\cos{x_1},x_1^2+x_2+2)f(x)=(e2x1+x2,3x2−cosx1,x12+x2+2)
g(y)=(3y1+2y2+y32,y12−y3+1)g(y)=(3y_1+2y_2+y_3^2,y_1^2-y_3+1)g(y)=(3y1+2y2+y32,y12−y3+1)
( a ) If F(x)=g(f(x))F(x)=g(f(x))F(x)=g(f(x)), find DF(0)DF(\mathbf{0})DF(0).
( b ) If G(y)=f(g(y))G(y)=f(g(y))G(y)=f(g(y)), find DG(0)DG(\mathbf{0})DG(0).
Solution: We first have f(0,0)=(1,−1,2),g(0,0,0)=(0,1)f(0,0)=(1,-1,2),g(0,0,0)=(0,1)f(0,0)=(1,−1,2),g(0,0,0)=(0,1) and
Df(x1,x2)=[2e2x1+x2e2x1+x2sinx132x11],Dg(y1,y2,y3)=[322y32y10−1]Df(x_1,x_2 )=\begin{bmatrix}2e^{2x_1+x_2}&e^{2x_1+x_2}\\{\sin}x_1&3\\2x_1&1\end{bmatrix},Dg(y_1,y_2,y_3 )=\begin{bmatrix}3&2&2y_3\\2y_1&0&-1\end{bmatrix}Df(x1,x2)=⎣⎡2e2x1+x2sinx12x1e2x1+x231⎦⎤,Dg(y1,y2,y3)=[32y1202y3−1]
( a ) By the chain rule we have
DF(0)=Dg(f(0))⋅Df(0)=Dg(1,−1,2)⋅Df(0,0)=[32420−1][210301]=[61341]\begin{aligned}DF(\mathbf{0})&=Dg(f(\mathbf{0})){\cdot}Df(\mathbf{0})=Dg(1,-1,2){\cdot}Df(0,0)\\&=\begin{bmatrix}3&2&4\\2&0&-1\end{bmatrix}\begin{bmatrix}2&1\\0&3\\0&1\end{bmatrix}=\begin{bmatrix}6&13\\4&1\end{bmatrix}\end{aligned}DF(0)=Dg(f(0))⋅Df(0)=Dg(1,−1,2)⋅Df(0,0)=[32204−1]⎣⎡200131⎦⎤=[64131]
( b ) By the chain rule we have
DG(0)=Df(g(0))⋅Dg(0)=Df(0,1)⋅Dg(0,0,0)=[2ee0301][32000−1]=[6e4e−e00−300−1]\begin{aligned}DG(\mathbf{0})&=Df(g(\mathbf{0})){\cdot}Dg(\mathbf{0})=Df(0,1){\cdot}Dg(0,0,0)\\&=\begin{bmatrix}2e&e\\0&3\\0&1\end{bmatrix}\begin{bmatrix}3&2&0\\0&0&-1\end{bmatrix}=\begin{bmatrix}6e&4e&-e\\0&0&-3\\0&0&-1\end{bmatrix}\end{aligned}DG(0)=Df(g(0))⋅Dg(0)=Df(0,1)⋅Dg(0,0,0)=⎣⎡2e00e31⎦⎤[30200−1]=⎣⎡6e004e00−e−3−1⎦⎤
Exercise 3. Let f:R3→Rf:\mathbf{R}^3\to\mathbf{R}f:R3→R and g:R2→Rg:\mathbf{R}^2\to\mathbf{R}g:R2→R be differentiable. Let F:R2→RF:\mathbf{R}^2\to\mathbf{R}F:R2→R be defined by the equation
F(x,y)=f(x,y,g(x,y))F(x,y)=f(x,y,g(x,y))F(x,y)=f(x,y,g(x,y))
( a ) Find DFDFDF in terms of the partials of fff and ggg.
( b ) If F(x,y)=0F(x,y)=0F(x,y)=0 for all (x,y)(x,y)(x,y), find D1gD_1gD1g and D2gD_2gD2g in terms of the partials of fff.
Solution:
( a ) We have DF(x,y)=[D1F(x,y)D2F(x,y)]DF(x,y)=\begin{bmatrix}D_1 F(x,y)&D_2 F(x,y) \end{bmatrix}DF(x,y)=[D1F(x,y)D2F(x,y)], and
D1F(x,y)=limt→0f(x+t,y,g(x+t,y))−f(x,y,g(x,y))t=limt→0f(x+t,y,g(x+t,y))−f(x,y,g(x+t,y))t+limt→0f(x,y,g(x+t,y))−f(x,y,g(x,y))t=D1f(x,y,g(x,y))+D3f(x,y,g(x,y))⋅D1g(x,y)\begin{aligned}D_1 F(x,y)&=\lim_{t→0}\frac{f(x+t,y,g(x+t,y))-f(x,y,g(x,y))}{t}\\&=\lim_{t→0}\frac{f(x+t,y,g(x+t,y))-f(x,y,g(x+t,y))}{t}+\lim_{t→0}\frac{f(x,y,g(x+t,y))-f(x,y,g(x,y))}{t}\\&=D_1 f(x,y,g(x,y))+D_3 f(x,y,g(x,y)){\cdot}D_1 g(x,y)\end{aligned}D1F(x,y)=t→0limtf(x+t,y,g(x+t,y))−f(x,y,g(x,y))=t→0limtf(x+t,y,g(x+t,y))−f(x,y,g(x+t,y))+t→0limtf(x,y,g(x+t,y))−f(x,y,g(x,y))=D1f(x,y,g(x,y))+D3f(x,y,g(x,y))⋅D1g(x,y)
D2F(x,y)=D2f(x,y,g(x,y))+D3f(x,y,g(x,y))⋅D2g(x,y)D_2 F(x,y)=D_2 f(x,y,g(x,y))+D_3 f(x,y,g(x,y)){\cdot}D_2 g(x,y)D2F(x,y)=D2f(x,y,g(x,y))+D3f(x,y,g(x,y))⋅D2g(x,y)
( b ) In this case D1F(x,y)=D2F(x,y)=0D_1 F(x,y)=D_2 F(x,y)=0D1F(x,y)=D2F(x,y)=0, thus
D1g(x,y)=[D3f(x,y,g(x,y))]−1⋅(−D1f(x,y,g(x,y)))D_1 g(x,y)=[D_3 f(x,y,g(x,y))]^{-1}{\cdot}(-D_1 f(x,y,g(x,y)))D1g(x,y)=[D3f(x,y,g(x,y))]−1⋅(−D1f(x,y,g(x,y)))
D2g(x,y)=[D3f(x,y,g(x,y))]−1⋅(−D2f(x,y,g(x,y)))D_2 g(x,y)=[D_3 f(x,y,g(x,y))]^{-1}{\cdot}(-D_2 f(x,y,g(x,y)))D2g(x,y)=[D3f(x,y,g(x,y))]−1⋅(−D2f(x,y,g(x,y)))
Exercise 4. Let g:R2→R2g:\mathbf{R}^2\to\mathbf{R}^2g:R2→R2 be defined by the equation g(x,y)=(x,y+x2)g(x,y)=(x,y+x^2)g(x,y)=(x,y+x2). Let f:R2→Rf:\mathbf{R}^2\to\mathbf{R}f:R2→R be the function defined in Example 3 of Section 5. Let h=f∘gh=f\circ gh=f∘g. Show that the directional derivatives of fff and ggg exist everywhere, but there is a u≠0\mathbf{u}\neq\mathbf{0}u=0 for which h′(0;u)h'(\mathbf{0};\mathbf{u})h′(0;u) does not exist.
Solution: The directional derivatives of f exists everywhere is clear from the text. Since Dg(x,y)Dg(x,y)Dg(x,y) exists everywhere and Dg(x,y)=[12x01]Dg(x,y)=\begin{bmatrix}1&2x\\0&1\end{bmatrix}Dg(x,y)=[102x1], the directional derivatives of g exists everywhere since
g′(a;u)=Dg(a)⋅ug'(\mathbf{a};\mathbf{u})=Dg(\mathbf{a}){\cdot}\mathbf{u}g′(a;u)=Dg(a)⋅u
To show ∃u≠0\exists\mathbf{u}\neq 0∃u=0, s.t. h′(0;u)h'(\mathbf{0};\mathbf{u})h′(0;u) does not exist, first notice h(0)=f(g(0))=f(0,0)=0h(\mathbf{0})=f(g(\mathbf{0}))=f(0,0)=0h(0)=f(g(0))=f(0,0)=0, let u=(1,0)T\mathbf{u}=(1,0)^Tu=(1,0)T, then when t→0,t≠0t→0,t\neq 0t→0,t=0, we have
h(0+tu)−h(0)t=h(t,0)t=f(t,t2)t=1tt2t2(t4+t4)=12t\frac{h(\mathbf{0}+t\mathbf{u})-h(\mathbf{0})}{t}=\frac{h(t,0)}{t}=\frac{f(t,t^2)}{t}=\frac{1}{t} \frac{t^2 t^2}{(t^4+t^4)}=\frac{1}{2t}th(0+tu)−h(0)=th(t,0)=tf(t,t2)=t1(t4+t4)t2t2=2t1
thus the limit
h′(0;u)=limt→0h(0+tu)−h(0)t=limt→012th'(\mathbf{0};\mathbf{u})=\lim_{t→0}\frac{h(\mathbf{0}+t\mathbf{u})-h(\mathbf{0})}{t}=\lim_{t→0}\frac{1}{2t}h′(0;u)=t→0limth(0+tu)−h(0)=t→0lim2t1
does not exist.
本节详细阐述了链式法则,通过例题演示如何计算复合函数的导数,包括f(x,y)=g(f(x))和f(g(y))的导数计算,并讨论了多元函数的均值定理与反函数导数特性。关键概念如CrC^rCr类函数和非奇异矩阵对导数的影响也得到了深入解析。
1579

被折叠的 条评论
为什么被折叠?



