了解AI生图
AIGC(AI-Generated Content)是通过人工智能技术自动生成内容的生产方式。
AI生图历史
最早的AI生图可追溯到20世纪70年代,当时由艺术家哈罗德·科恩(Harold Cohen)发明AARON,可通过机械臂输出作画。
(图片来源于task2 学习手册)
现代的AI生图模型大多基于深度神经网络基础上训练,最早可追溯到2012年吴恩达训练出的能生成“猫脸”的模型。使用卷积神经网络(CNN) 训练,证明了深度学习模型能够学习到图像的复杂特征。
(图片来源于task2 学习手册)
2015年,谷歌推出了 “深梦”(Deep Dream) 图像生成工具,类似一个高级滤镜,可以基于给定的图片生成梦幻版图片。(该模型同样也是使用CNN实现的。)
(图片来源于task2 学习手册)
2021 年 1 月 OpenAI 推出DALL-E模型(一个深度学习算法模型,是GPT-3 语言处理模型的一个衍生版本),能直接从文本提示“按需创造”风格多样的图形设计。(DALL-E和DALL-E 2都不是直接基于CNN构建的,而是分别采用了基于Transformer的架构和扩散模型来实现从文本到图像的生成任务。)
(图片来源于task2 学习手册)
AI绘画作品《太空歌剧院》,该作品在美国科罗拉多州举办的新兴数字艺术家竞赛中获得了比赛“数字艺术/数字修饰照片”类别一等奖,引起了当时“艺术家们 Not Happy”的社会舆论。
(图片来源于task2 学习手册)
AI生图前沿
(图片来源于task2 学习手册)
Kolors(可图)模型(点击即可跳转魔搭模型介绍页) 是快手开源的文本到图像生成模型,该模型具有对英语和汉语的深刻理解,并能够生成高质量、逼真的图像。
代码开源链接:https://github.com/Kwai-Kolors/Kolors
模型开源链接:https://modelscope.cn/models/Kwai-Kolors/Kolors
技术报告链接:https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf
魔搭研习社最佳实践说明:https://www.modelscope.cn/learn/575?pid=543
精读baseline代码
借助AI智能助手帮我们阅读代码:
- 分析代码的主题架构;
- 逐行代码解析。
输入的 Prompt
你是一个优秀的python开发工程师,现在我们需要你帮我们分析这个代码的主体框架,你需要把代码按照工作流分成几部分,用中文回答我的问题。{此处替换前面的代码}
向AI追问
我对其中{替换成你的问题}还是不太理解,给我再详细介绍一下
文生图代码的框架结构(图片来源于task2 学习手册)
从baseline中整理出来的所有代码,通过通义千问 来解析:
# 安装 Data-Juicer 和 DiffSynth-Studio
!pip install simple-aesthetics-predictor # 安装simple-aesthetics-predictor
!pip install -v -e data-juicer # 安装data-juicer
!pip uninstall pytorch-lightning -y # 卸载pytorch-lightning
!pip install peft lightning pandas torchvision # 安装 peft lightning pandas torchvision
!pip install -e DiffSynth-Studio # 安装DiffSynth-Studio
# 从魔搭数据集中下载数据集AI-ModelScope/lowres_anime
from modelscope.msdatasets import MsDataset #引入数据集模块msdatasets
ds = MsDataset.load(
'AI-ModelScope/lowres_anime',
subset_name='default',
split='train',
cache_dir="/mnt/workspace/kolors/data" # 指定缓存目录
) # 从魔搭数据集中下载数据集AI-ModelScope/lowres_anime,赋值给参数ds
# 生成数据集
import json, os # 导入json和os模块
from data_juicer.utils.mm_utils import SpecialTokens # 导入SpecialTokens
from tqdm import tqdm # 导入tqdm进度条管理
os.makedirs("./data/lora_dataset/train", exist_ok=True) # 创建文件夹./data/lora_dataset/train
os.makedirs("./data/data-juicer/input", exist_ok=True) # 创建文件夹./data/data-juicer/input
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
for data_id, data in enumerate(tqdm(ds)): # 遍历数据集ds
image = data["image"].convert("RGB") # 将数据集的图片转换为RGB
image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg") # 保存数据集的图片
metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]} # 生成当前图片的索引数据
f.write(json.dumps(metadata)) # 将索引数据写入文件./data/data-juicer/input/metadata.jsonl
f.write("\n")
# 配置data-juicer,并进行数据筛选过滤
# 配置过滤的规则
data_juicer_config = """
# global parameters
project_name: 'data-process' # 名称
dataset_path: './data/data-juicer/input/metadata.jsonl' # 你前面生成的数据的索引文件
np: 4 # 线程数
text_keys: 'text' # 文件./data/data-juicer/input/metadata.jsonl的描述的字段名
image_key: 'image' # 文件./data/data-juicer/input/metadata.jsonl的图片字段名
image_special_token: '<__dj__image>'
export_path: './data/data-juicer/output/result.jsonl' # 筛选通过的图片结果保存的的索引文件
# process schedule
# a list of several process operators with their arguments
# 过滤的规则
process:
- image_shape_filter: # 图片尺寸过滤
min_width: 1024 # 最小宽度1024
min_height: 1024 # 最小高度1024
any_or_all: any # 符合前面条件的图片才会被保留
- image_aspect_ratio_filter: # 图片长宽比过滤
min_ratio: 0.5 # 最小长宽比0.5
max_ratio: 2.0 # 最大长宽比2.0
any_or_all: any # 符合前面条件的图片才会被保留
"""
# 保存data-juicer配置到data/data-juicer/data_juicer_config.yaml
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
file.write(data_juicer_config.strip())
# data-juicer开始执行数据筛选
!dj-process --config data/data-juicer/data_juicer_config.yaml
# 通过前面通过data-juicer筛选的图片索引信息./data/data-juicer/output/result.jsonl,生成数据集
import pandas as pd # 导入pandas
import os, json # 导入os和json
from PIL import Image # 导入Image
from tqdm import tqdm # 导入tqdm进度条管理
texts, file_names = [], [] # 定义两个空列表,分别存储图片描述和图片名称
os.makedirs("./data/lora_dataset_processed/train", exist_ok=True) # 创建文件夹./data/lora_dataset_processed/train
with open("./data/data-juicer/output/result.jsonl", "r") as file: # 打开前面data-juicer筛选的图片索引文件./data/data-juicer/output/result.jsonl
for data_id, data in enumerate(tqdm(file.readlines())): # 遍历文件./data/data-juicer/output/result.jsonl
data = json.loads(data) # 将json字符串转换为对象
text = data["text"] # 获取对象中的text属性,也就是图片的描述信息
texts.append(text) # 将图片的描述信息添加到texts列表中
image = Image.open(data["image"][0]) # 获取对象中的image属性,也就是图片的路径,然后用这个路径打开图片
image_path = f"./data/lora_dataset_processed/train/{data_id}.jpg" # 生成保存图片的路径
image.save(image_path) # 将图片保存到./data/lora_dataset_processed/train文件夹中
file_names.append(f"{data_id}.jpg") # 将图片名称添加到file_names列表中
data_frame = pd.DataFrame() # 创建空的DataFrame
data_frame["file_name"] = file_names # 将图片名称添加到data_frame中
data_frame["text"] = texts # 将图片描述添加到data_frame中
data_frame.to_csv("./data/lora_dataset_processed/train/metadata.csv", index=False, encoding="utf-8-sig") # 将data_frame保存到./data/lora_dataset_processed/train/metadata.csv
data_frame # 查看data_frame
# 下载可图模型
from diffsynth import download_models # 导入download_models
download_models(["Kolors", "SDXL-vae-fp16-fix"]) # 下载可图模型
# DiffSynth-Studio提供了可图的Lora训练脚本,查看脚本信息
!python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py -h
# 执行可图Lora训练
import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \ # 选择使用可图的Lora训练脚本DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
--pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ # 选择unet模型
--pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ # 选择text_encoder
--pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ # 选择vae模型
--lora_rank 16 \ # lora_rank 16 表示在权衡模型表达能力和训练效率时,选择了使用 16 作为秩,适合在不显著降低模型性能的前提下,通过 LoRA 减少计算和内存的需求
--lora_alpha 4.0 \ # 设置 LoRA 的 alpha 值,影响调整的强度
--dataset_path data/lora_dataset_processed \ # 指定数据集路径,用于训练模型
--output_path ./models \ # 指定输出路径,用于保存模型
--max_epochs 1 \ # 设置最大训练轮数为 1
--center_crop \ # 启用中心裁剪,这通常用于图像预处理
--use_gradient_checkpoin