Leetcode - Valid Number

本文深入探讨了数值验证问题,通过构建确定性有限自动机(DFA)来解决字符串是否为数值的问题。详细介绍了如何从无效状态、整数状态、小数状态、指数状态等不同场景出发,构建状态转移表,并最终通过正则表达式实现数值验证。文章提供了直观的DFA示例和转换表格,帮助理解数值验证背后的逻辑。

https://leetcode.com/problems/valid-number/

Validate if a given string is numeric.

Some examples:

"0" => true
" 0.1 " => true
"abc" => false
"1 a" => false
"2e10" => true

Note: It is intended for the problem statement to be ambiguous. You should gather all requirements up front before implementing one.

Some other hidden tests:
"3e3.1" =>false
" +.1 " => true
"-1." =>true

Here is a nice solution for this problem: http://blog.youkuaiyun.com/kenden23/article/details/18696083

Using Automaton!


The problem is, how to generate Deterministic Finite Automaton(DFA) ?


Assume that the string has been stripped (i.e. no spaces at head or at tail), for each state, there are 5 possible inputs: invalid, [0-9], +/-, dot(.) and e/E. 

For any state, invalid input would directly lead to an invalid state (State -1). And feed each input to current state, observe whether this would lead to an invalid state (State-1) or valid one. If the output state is valid, is it a new state you have never seen before or could it be covered by previous state?


By answering 2 questions above, I formed the following DFA (only valid states are drawn): 

S0: start

S1: only contains integers (this is a valid final state)

S2: only contains +/- (this is an invalid final state)

S3: contains decimal point but without any tenths number (this is an invalid final state)

S4: contains any decimal number (this is a valid final state)

S5: now we encountered exponential symbol (this is an invalid final state)

S6: ...e+/-, a temporary state for numbers like ..e-1, e+1

S7: all numbers with exponential symbol (valid final state)





From above DFA digram, we can generate the transition table. Given an input and current state, we can know the next state with this table.


Transition Table
 invalid0..9+/-dote/E
S0-1123-1
S1-11-145
S2-11-13-1
S3-14-1-1-1
S4-14-1-15
S5-176-1-1
S6-17-1-1-1
S7-17-1-1-1

Code

public class Solution {
    public boolean isNumber(String s) {
        if (s == null || s.length() == 0)
            return false;
        int[][] transTable = {{-1,1,2,3,-1},{-1,1,-1,4,5},
                            {-1,1,-1,3,-1},{-1,4,-1,-1,-1},
                            {-1,4,-1,-1,5},{-1,7,6,-1,-1},
                            {-1,7,-1,-1,-1}, {-1,7,-1,-1,-1}};
        s = s.trim();
        int input = 0, state = 0;
        for (int i = 0; i < s.length(); i++) {
            char c = s.charAt(i);
            if (c >= '0' && c <= '9')
                input = 1;
            else if (c == 'e' || c == 'E')
                input = 4;
            else if (c == '+' || c == '-')
                input = 2;
            else if (c == '.')
                input = 3;
            else input = 0;
            state = transTable[state][input];
            if (state == -1)
                return false;
        }
        return state == 1 || state == 4 || state == 7;
    }
}




基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值