一、背景
**
1.对某些复杂情况的RGB图像特征难以鉴别。
appearance features in RGB data are less predictive to some challenging scenes
2.由于RGB图像的复杂特征使用对称两步流模型会“overlooked”,从而产生大量损失。
a symmetric two-stream network may overlook the inherent differences of RGB and depth data.
existing RGB-D methods inevitably suffer from detail information loss [41,16] for adopting strides and pooling operations in the RGB and depth streams.
3.现有的解决方案限制预测特征结构和细节。
An intuitive solution is to use skip-connections [22] or short-connections [21] for reconstructing the detail information.Although these strategies have brought satisfactory improvements, they remain restrictive to predict the complete structures with fine details.
**
二.本文要解决的问题
1.有效提取全局信息并且保留局部细节。
2.使用深度特征引导RGB特征精准定位显著目标。

该博客探讨了在复杂场景中RGB图像特征的局限性,提出了一种不对称双流架构,通过Flow Ladder Module (FLM)、DepthNet和Depth Attention Module (DAM)来保留局部细节和提取全局信息。DepthNet利用深度图获取空间细节,RGBnet结合VGG19和FEM捕捉结构信息。DAM利用深度线索生成注意力权重,精确定位显著目标。
最低0.47元/天 解锁文章
731

被折叠的 条评论
为什么被折叠?



