面试中经常问到的 ConCurrentHashMap jdk1.7 与 1.8 的区别
简单描述:
jdk1.7分段锁segment 桶分段
jdk1.8 使用了基于UnSafe类的compareAndSet 原子乐观锁+synchronized 高效实现
说明:UnSafe类不能用于业务编程,只能用于jdk jvm 原子乐观锁操作实现,及脱离JVM
内存使用及释放
大概图解:

代码分析:
(1)put代码主体逻辑:cas乐观锁 + synchronized + 自旋
transient volatile Node<K,V>[] table;
static final int MOVED = -1; // hash for forwarding nodes
final V putVal(K key, V value, boolean onlyIfAbsent) {
//1.key或 value 为null则抛出异常
if (key == null || value == null) throw new NullPointerException();
//2.计算key的 hashCode
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
(2)初始化桶:cas + 线程自旋等待
/*表(指桶数组)的初始化与扩容控制器。
当该值为负数时,表正在进行初始化或扩容:值为 -1 表示正在初始化,
值为其他负数时,其绝对值减 1 即为当前活跃的扩容线程数(即 -(1 + 活跃扩容线程数))。
若该值非负:当表(桶数组)为 null 时,该值表示表创建时要使用的初始容量(值为 0 时表示使用默认初始容量);
表初始化完成后,该值表示触发下一次扩容的元素数量阈值。
*/
private transient volatile int sizeCtl;
// Unsafe mechanics
private static final sun.misc.Unsafe U;
//默认初始表容量。必须是 2 的幂(即至少为 1),且最大不得超过 MAXIMUM_CAPACITY(最大容量常量)。
private static final int DEFAULT_CAPACITY = 16;
/*初始化桶数组 */
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
//如果sizeCtl < 0 则表明有线程正在桶扩容,执行等待
if ((sc = sizeCtl) < 0)
Thread.yield(); //初始化竞争失败;只需自旋等待即可。
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//原子cas操作,参数:当前对象、偏移量、期待原值、更新后的值(SIZECTL, sc:SIZECTL有没有变更过 )
//如果没有并发,则直接加乐观锁进行桶扩容
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
(3)tabAt 索引定位:
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
//提前获取 Object getObjectVolatile(Object obj, long offset);
//obj:目标对象(要读取字段所属的对象);
//offset:字段在对象内存布局中的 “偏移量”(需通过 Unsafe.objectFieldOffset(Field) 提前获取)。
//主内存同步 强制读主内存 禁止重排 无锁并发场景,需确保读取最新值
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
(4)casTabAt 更新扩展node链表:cas原子乐观锁
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
//CAS(Compare-And-Swap,比较并交换)方式原子性地更新对象的字段值,是 Java 并发编程中实现无锁线程安全的底层基石。
//Object obj 目标对象(要修改的字段所属对象)
//long offset 字段在对象内存中的偏移量
//Object expect 预期的当前值
//Object update 要更新的新值
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
(5)helpTransfer 并发高效迁移数据:
//当哈希表处于扩容过程时,某些辅助方法会参与到 “桶数组之间的数据迁移”
//工作中 —— 将旧数组中的元素重新计算哈希并转移到新数组的对应位置,以配合扩容多线程并发扩容,提升扩容效率。
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}
(6)resizeStamp 扩容时的标记位
//返回大小为 n 的表进行扩容时的标记位。当向左移动 RESIZE_STAMP_SHIFT 位时,该值必须为负数。
static final int resizeStamp(int n) {
return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
}
(7)transfer 移动和 / 或复制每个桶(bin)中的节点到新表
//移动和 / 或复制每个桶(bin)中的节点到新表(数组)中
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
(8)涉及实现内部类,可参考源码
Node<K,V>
Segment<K,V>
Traverser<K,V>
CollectionView<K,V,E>
CounterCell
ForwardingNode<K,V>
878

被折叠的 条评论
为什么被折叠?



