What Is Text Mining?

本文介绍了文本挖掘的概念,即通过计算机从不同的书面资源中自动提取新信息,并将其链接起来形成新的事实或假设。文本挖掘不同于传统的网页搜索,其目标是发现未知的信息。文中还探讨了文本挖掘的应用场景和技术挑战。

What Is Text Mining?

Marti Hearst

 

What is text mining? What are its potential applications and limitations?  


Text Mining is the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources. A key element is the linking together of the extracted information together to form new facts or new hypotheses to be explored further by more conventional means of experimentation.

 

Text mining is different from what we're familiar with in web search. In search, the user is typically looking for something that is already known and has been written by someone else. The problem is pushing aside all the material that currently isn't relevant to your needs in order to find the relevant information.

 

In text mining, the goal is to discover heretofore unknown information, something that no one yet knows and so could not have yet written down.

 

Text mining is a variation on a field called data mining, that tries to find interesting patterns from large databases. A typical example in data mining is using consumer purchasing patterns to predict which products to place close together on shelves, or to offer coupons for, and so on. For example, if you buy a flashlight, you are likely to buy batteries along with it. A related application is automatic detection of fraud, such as in credit card usage. Analysts look across huge numbers of credit card records to find deviations from normal spending patterns. A classic example is the use of a credit card to buy a small amount of gasoline followed by an overseas plane flight. The claim is that the first purchase tests the card to be sure it is active.

 

The difference between regular data mining and text mining is that in text mining the patterns are extracted from natural language text rather than from structured databases of facts . Databases are designed for programs to process automatically; text is written for people to read. We do not have programs that can "read" text and will not have such for the foreseeable future. Many researchers think it will require a full simulation of how the mind works before we can write programs that read the way people do.

 

However, there is a field called computational linguistics (also known as natural language processing) which is making a lot of progress in doing small subtasks in text analysis. For example, it is relatively easy to write a program to extract phrases from an article or book that, when shown to a human reader, seem to summarize its contents. (The most frequent words and phrases in this article, minus the really common words like "the" are: text mining, information, programs, and example, which is not a bad five-word summary of its contents.)

 

There are programs that can, with reasonable accuracy, extract information from text with somewhat regularized structure. For example, programs that read in resumes and extract out people's names, addresses, job skills, and so on, can get accuracies in the high 80 percents.

 

I don't consider this to be text mining; rather it falls into an area called information extraction. However, I am a bit of a purist when it comes to defining what text mining is. I distinguish between what I call "real" text mining, that discovers new pieces of knowledge, from approaches that find overall trends in textual data.

 

An analogy I like to use comes from the realm of crime fighting. I think discovering new knowledge vs. showing trends is like the difference between a detective following clues to find the criminal vs. analysts looking at crime statistics to assess overall trends in car theft.

 

People are using the output of such programs to try to link together information in interesting ways. For example, one can extract all the names of people and companies that occur in news text surrounding the topic of wireless technology to try to infer who the players are in that field. There are a number of companies that are investigating this kind of application.

 

One problem with these approaches is that it is difficult to recognize which of the many relations that are shown are truly interesting. You'll immediately see who the big players are, but anyone who knows the business will already be aware of this. You'll also see many, many weak links between various players, hundreds or thousands of such links, and you can't tell which are the really interesting ones that you should pay attention to.

 

The most active, and I think promising, application area for text mining is in the biosciences . The best known example is Don Swanson's work on hypothesizing causes of rare diseases by looking for indirect links in different subsets of the bioscience literature.

 

As another example, one of the big current questions in genomics is which proteins interact with which other proteins. There has been notable success in looking at which words co-occur in articles that discuss the proteins in order to predict such interactions. The key is to not look for direct mentions of pairs, but to look for articles that mention individual protein names, keep track of which other words occur in those articles, and then look for other articles containing the same sets of words. This very simple method can yield surprisingly good results, even though the meaning of the texts are not being discerned by the programs. Rather, the text is treated like a "bag of words".

 

To get farther though we need more sophisticated language analysis. A number of us are working on statistical techniques that try to assign semantics, or meaning, to parts of the text. We break off pieces of the problem of analysis, targeted towards particular applications, rather than trying to "read" the articles as a whole. This goal is especially promising in the biosciences due to the nature of the text itself. In some ways it is easier to process automatically than ordinary text. It is less ambiguous and the processes it describes are somewhat mechanical, and so representable in a computer.

 

The fundamental limitations of text mining are first, that we will not be able to write programs that fully interpret text for a very long time , and second, that the information one needs is often not recorded in textual form . If I tried to write a program that detected when a where a new word came into existence and how it spread by analyzing web pages, I would miss important clues relating to usage in spoken conversations, email, on the radio and TV, and so on . Similarly , if I tried to write a program that processes published documents in order to guess what will happen to a bill in Washington DC, I would fail because most of the action still happens in negotiations behind closed doors.

 

Untangling Text Data Mining, Marti Hearst, ACL'99.

 

 

 

已经博主授权,源码转载自 https://pan.quark.cn/s/053f1da40351 在计算机科学领域,MIPS(Microprocessor without Interlocked Pipeline Stages)被视作一种精简指令集计算机(RISC)的架构,其应用广泛存在于教学实践和嵌入式系统设计中。 本篇内容将深入阐释MIPS汇编语言中涉及数组处理的核心概念与实用操作技巧。 数组作为一种常见的数据结构,在编程中能够以有序化的形式储存及访问具有相同类型的数据元素集合。 在MIPS汇编语言环境下,数组通常借助内存地址与索引进行操作。 以下列举了运用MIPS汇编处理数组的关键要素:1. **数据存储**: - MIPS汇编架构采用32位地址系统,从而能够访问高达4GB的内存容量。 - 数组元素一般以连续方式存放在内存之中,且每个元素占据固定大小的字节空间。 例如,针对32位的整型数组,其每个元素将占用4字节的存储空间。 - 数组首元素的地址被称为基地址,而数组任一元素的地址可通过基地址加上元素索引乘以元素尺寸的方式计算得出。 2. **寄存器运用**: - MIPS汇编系统配备了32个通用寄存器,包括$zero, $t0, $s0等。 其中,$zero寄存器通常用于表示恒定的零值,$t0-$t9寄存器用于暂存临时数据,而$s0-$s7寄存器则用于保存子程序的静态变量或参数。 - 在数组处理过程中,基地址常被保存在$s0或$s1寄存器内,索引则存储在$t0或$t1寄存器中,运算结果通常保存在$v0或$v1寄存器。 3. **数组操作指令**: - **Load/Store指令**:这些指令用于在内存与寄存器之间进行数据传输,例如`lw`指令用于加载32位数据至寄存器,`sw`指令...
根据原作 https://pan.quark.cn/s/cb681ec34bd2 的源码改编 基于Python编程语言完成的飞机大战项目,作为一项期末学习任务,主要呈现了游戏开发的基本概念和技术方法。 该项目整体构成约500行代码,涵盖了游戏的核心运作机制、图形用户界面以及用户互动等关键构成部分。 该项目配套提供了完整的源代码文件、相关技术文档、项目介绍演示文稿以及运行效果展示视频,为学习者构建了一个实用的参考范例,有助于加深对Python在游戏开发领域实际应用的认识。 我们进一步研究Python编程技术在游戏开发中的具体运用。 Python作为一门高级编程语言,因其语法结构清晰易懂和拥有丰富的库函数支持,在开发者群体中获得了广泛的认可和使用。 在游戏开发过程中,Python经常与Pygame库协同工作,Pygame是Python语言下的一款开源工具包,它提供了构建2D游戏所需的基础功能模块,包括窗口系统管理、事件响应机制、图形渲染处理、音频播放控制等。 在"飞机大战"这一具体游戏实例中,开发者可能运用了以下核心知识点:1. **Pygame基础操作**:掌握如何初始化Pygame环境,设定窗口显示尺寸,加载图像和音频资源,以及如何启动和结束游戏的主循环流程。 2. **面向对象编程**:游戏中的飞机、子弹、敌人等游戏元素通常通过类的设计来实现,利用实例化机制来生成具体的游戏对象。 每个类都定义了自身的属性(例如位置坐标、移动速度、生命值状态)和方法(比如移动行为、碰撞响应、状态更新)。 3. **事件响应机制**:Pygame能够捕获键盘输入和鼠标操作事件,使得玩家可以通过按键指令来控制飞机的移动和射击行为。 游戏会根据这些事件的发生来实时更新游戏场景状态。 4. **图形显示与刷新**:...
【顶级SCI复现】高比例可再生能源并网如何平衡灵活性与储能成本?虚拟电厂多时间尺度调度及衰减建模(Matlab代码实现)内容概要:本文围绕高比例可再生能源并网背景下虚拟电厂的多时间尺度调度与储能成本优化问题展开研究,重点探讨如何在保证系统灵活性的同时降低储能配置与运行成本。通过构建多时间尺度(如日前、日内、实时)协调调度模型,并引入储能设备衰减建模,提升调度精度与经济性。研究结合Matlab代码实现,复现顶级SCI论文中的优化算法与建模方法,涵盖鲁棒优化、分布鲁棒、模型预测控制(MPC)等先进手段,兼顾风光出力不确定性与需求响应因素,实现虚拟电厂内部多能源协同优化。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、智能电网、能源互联网领域的工程技术人员。; 使用场景及目标:① 掌握虚拟电厂多时间尺度调度的核心建模思路与实现方法;② 学习如何将储能寿命衰减纳入优化模型以提升经济性;③ 复现高水平SCI论文中的优化算法与仿真流程,服务于科研论文写作与项目开发。; 阅读建议:建议结合文中提供的Matlab代码逐模块分析,重点关注目标函数设计、约束条件构建及求解器调用过程,配合实际案例数据进行调试与验证,深入理解优化模型与物理系统的映射关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值