题目
把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。
你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。
示例 1:
输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]
示例 2:
输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]
限制:
1 <= n <= 11
代码
Python
# 思路:
# 采用动态规划求解,dp[i][j]代表投第i个骰子和为j的次数
# 复杂度:
# O(NlogN)
class Solution:
def twoSum(self, n: int) -> List[float]:
dp=[[0 for _ in range(6*n+1)] for _ in range(n+1)]
res=[]
# 特例
for i in range(1,7):
dp[1][i]=1
for i in range(2,n+1):
for j in range(i,i*6+1):
for k in range(1,7):
if j>=k+1:
dp[i][j]+=dp[i-1][j-k] #状态转移方程
# 计算概率
for i in range(n,n*6+1):
res.append(dp[n][i]*1.0/6**n)
return res
C++
class Solution {
public:
vector<double> twoSum(int n) {
vector<vector<double>> dp(n+1,vector<double>(6*n+1,0));
vector<double> res;
for (int i=1; i<=6; i++) dp[1][i]=1;
for (int i=2; i<=n; i++) {
for (int j=i;j<=6*i;j++) {
for (int k=1;k<=6;k++) {
if (j>=k+1) dp[i][j]+=dp[i-1][j-k];
}
}
}
for (int i=n;i<6*n+1;i++) {
res.push_back(dp[n][i]*pow(1.0/6,n));
}
return res;
}
};