litecoin price history data analysis

Cryptographic currency has become a new focus of market assets. From the analysis of litecoin price history data, As bitcoin prices continue to rise, many investors are turning to other cryptocurrencies. In 2017, Litecoin has risen by 1400%, although the relative increase in bitcoin prices is not high, but There are also many investors in Litecoin.

historical%2Bdata.png

 

The price of Litecoin did not continue to rise after breaking through the pressure of 165 US dollars, but began to fall, and has fallen below the support of 155 US dollars and 150 US dollars. This was a big drop, and the price subsequently fell below $140. The current price is under $150 and 100 hours SMA. After falling to a low of $137, prices have rebounded slightly. The first pressure is near the 23.6% correction rate of the $163-137 decline. Due to the numerous resistances around $150-155, any significant increase may be limited in this block.

 

In addition, the 50% correction rate for the $163-137 range is around $150. Therefore, $150 may also be the resistance to the current uptrend. All in all, the current price is under the state of $150. The price of Litecoin is likely to continue to fall in the short term.

 

About the future of Litecoin

Analyze litecoin price history data, some people think it will rise to a high this year. This view has also been praised by analysts. And unlike Bitcoin, Litecoin's anonymous transactions are implemented on the main chain. Litecoin began to choose a different development path from Bitcoin. As a supplementary currency of Bitcoin, Litecoin continued to sit firmly at the leading position of the competition currency.

 

According to the data analysis, the recent cryptocurrency market has relatively strong market performance, while Bitcoin has similar properties of Litecoin, which has a relatively low price, long running time and high user size and popularity around the world, plus recent The trend of Bitcoin has skyrocketed. Therefore, the market sentiment is soaring, driving a large amount of funds into the Litecoin fund, which is one of the reasons for the increase.

 

Charlie Lee, the founder of Litecoin, once interviewed through Youtube. He said: "I still think this is a correct move, but what makes me suspicious is that in the long run, I think this is a correct behavior. However, in the short term, only the price of Litecoin is falling, and there is no new high, which may not be the most important decision."

转载于:https://my.oschina.net/u/3864993/blog/1846418

【RIS 辅助的 THz 混合场波束斜视下的信道估计与定位】在混合场波束斜视效应下,利用太赫兹超大可重构智能表面感知用户信道与位置(Matlab代码实现)内容概要:本文围绕“IS 辅助的 THz 混合场波束斜视下的信道估计与定位”展开,重点研究在太赫兹(THz)通信系统中,由于混合近场与远场共存导致的波束斜视效应下,如何利用超大可重构智能表面(RIS)实现对用户信道状态信息和位置的联合感知与精确估计。文中提出了一种基于RIS调控的信道参数估计算法,通过优化RIS相移矩阵提升信道分辨率,并结合信号到达角(AoA)、到达时间(ToA)等信息实现高精度定位。该方法在Matlab平台上进行了仿真验证,复现了SCI一区论文的核心成果,展示了其在下一代高频通信系统中的应用潜力。; 适合人群:具备通信工程、信号处理或电子信息相关背景,熟悉Matlab仿真,从事太赫兹通信、智能反射面或无线定位方向研究的研究生、科研人员及工程师。; 使用场景及目标:① 理解太赫兹通信中混合场域波束斜视问题的成因与影响;② 掌握基于RIS的信道估计与用户定位联合实现的技术路径;③ 学习并复现高水平SCI论文中的算法设计与仿真方法,支撑学术研究或工程原型开发; 阅读建议:此资源以Matlab代码实现为核心,强调理论与实践结合,建议读者在理解波束成形、信道建模和参数估计算法的基础上,动手运行和调试代码,深入掌握RIS在高频通信感知一体化中的关键技术细节。
我现在的代码已经能爬取一个品牌的数据了from DrissionPage import ChromiumPage from datetime import datetime import csv output_filename="A4.csv" filenames=["时间","价格","趋势","天数","价格变化","促销信息"] Pos='https://tool.manmanbuy.com/HistoryLowest.aspx?url=https%3A%2F%2Fdetail.tmall.com%2Fitem.htm%3Fdetail_redpacket_pop%3Dtrue%26id%3D559270244089%26ltk2%3D17477065512345huo1bwf9jdb36q0gzr0vj%26ns%3D1%26priceTId%3D2147830817477065254104592e1da0%26query%3D%25E5%25A4%258D%25E5%258D%25B0%25E7%25BA%25B8%26skuId%3D3650969450084%26spm%3Da21n57.1.hoverItem.1%26utparam%3D%257B%2522aplus_abtest%2522%253A%25226c72565727cd5802a7f34f1197aa9ecd%2522%257D%26xxc%3Dad_ztc' api='https://tool.manmanbuy.com/api.ashx' #数据接口 zdh=ChromiumPage() #初始化浏览器 zdh.get(Pos) #目标网页 zdh.listen.start(api) resp=zdh.listen.wait() data = resp.response.body def parse_price_history(data): date_price_str = data['data']['datePrice'].strip('[]"') #去除特殊字符 entries = [e.strip() for e in date_price_str.split('],[')] #分割数据成独立条目 price_history = [] for entry in entries: parts = entry.split(',', 2) # 最多分割2次,保留促销信息 if len(parts) < 2: continue timestamp = int(parts[0].strip(' "\'')) price = float(parts[1].strip(' "\'')) promotion = parts[2].strip(' "\'') if len(parts) > 2 else "" # 提取促销信息 dt = datetime.fromtimestamp(timestamp // 1000).strftime('%Y-%m-%d %H:%M:%S') #转换时间格式 price_history.append((dt, price, promotion)) # 保存促销信息 trends = [] for i in range(1, len(price_history)): prev_dt, prev_price, _ = price_history[i - 1] curr_dt, curr_price, promotion = price_history[i] price_diff = curr_price - prev_price trend = "上涨" if price_diff > 0 else "下跌" # 过滤持平情况 if abs(price_diff) < 0.01: continue # 跳过持平数据 delta = (datetime.strptime(curr_dt, '%Y-%m-%d %H:%M:%S') - datetime.strptime(prev_dt, '%Y-%m-%d %H:%M:%S')) days_diff = delta.days + delta.seconds / (24 * 3600) trends.append({ "时间": curr_dt, "价格": curr_price, "趋势": trend, "天数": round(days_diff, 2), "价格变化": round(price_diff, 2), "促销信息": promotion # 单独显示促销信息 }) return { "trend_analysis": trends, "latest_price": price_history[-1][1] if price_history else None } result = parse_price_history(data) if result and result["trend_analysis"]: print(f"最新价格: {result['latest_price']} 元") print("价格变动记录(过滤持平):") for change in result["trend_analysis"]: promo = f" | 促销: {change['促销信息']}" if change["促销信息"] else "" #若有促销信息则输出,若无则不输出 print( f"时间: {change['时间']} | 价格: {change['价格']} 元 | " f"趋势: {change['趋势']} | 距上次变动: {change['天数']} 天 | " f"变化: {change['价格变化']} 元{promo}" ) else: print("未检测到价格变动或数据异常") with open(output_filename,'w',newline='',encoding='utf-8-sig') as csvfile: csv_writer = csv.writer(csvfile) csv_writer.writerow(["时间","价格","趋势","距上次变动","变化","促销"]) #增加标头 for change in result["trend_analysis"]: data=[ change["时间"], change["价格"], change["趋势"], change["天数"], change["价格变化"], change["促销信息"] ] csv_writer.writerow(data) zdh.close()请帮我在原代码的基础上修改爬取多个品牌的相关数据
06-04
<think>嗯,用户现在的问题是在现有的Python爬虫代码基础上,修改以支持批量爬取多个品牌的商品数据。我需要仔细分析用户提供的引用和之前的对话,找出合适的解决方案。 首先,用户之前的代码主要是爬取单个页面的商品数据,分页处理是通过页码参数实现的。现在用户需要扩展到多个品牌,这意味着需要处理不同品牌的URL构造,可能每个品牌有不同的页面结构或参数。根据引用[3]提到的动态加载问题,可能需要检查每个品牌的页面是否使用不同的分页方式,比如有的品牌可能通过JavaScript加载,而有的则是静态页面。这时候可能需要调整分页处理的逻辑,或者使用不同的解析方法。用户提供的引用[1]和[4]提到了批量下载图片和处理反爬机制,这可能对处理多个品牌的数据有帮助,比如需要循环处理每个品牌,并处理每个品牌的反爬措施。此外,引用[2]提到的配置国内源可能对安装必要的库有帮助,但用户当前的问题更多是代码修改。接下来,我需要考虑如何修改现有代码。原代码中的base_url是单个品牌的URL,现在需要将其改为支持多个品牌。可能的解决方案是构造一个品牌列表,然后循环遍历每个品牌,生成对应的URL。例如,每个品牌的URL可能有不同的路径或参数,比如在URL中包含品牌名称或ID。然后,分页处理可能需要针对每个品牌单独处理。例如,每个品牌的最大页数可能不同,需要动态获取每个品牌的总页数,或者预设一个最大值。此外,需要考虑反爬机制,比如在请求每个品牌时添加延迟,使用代理等。 数据提取部分可能需要调整CSS选择器或XPath,因为不同品牌的页面结构可能不同。如果各品牌页面结构差异较大,可能需要为每个品牌编写不同的解析逻辑,或者找到共同的父元素来统一提取。另外,数据存储时,可能需要将品牌名称作为字段保存,以区分不同品牌的数据。例如,在product字典中添加'brand'字段,记录当前品牌。动态内容处理方面,如果某些品牌使用JavaScript渲染,可能需要结合Selenium或调用API接口,如引用[1]和[3]提到的。需要检查每个品牌的数据加载方式,调整相应的代码。 异常处理也很重要,比如某个品牌页面无法访问时,应跳过并继续下一个品牌,而不是中断整个程序。可以使用try-except块包裹每个品牌的请求和解析过程。最后,测试代码是否能够正确循环所有品牌,并处理每个品牌的分页,确保数据正确存储,且没有遗漏或重复。</think>### 基于现有代码的多品牌爬取实现方案 #### 一、核心修改思路 1. **品牌列表构造**:建立待爬取品牌的关键字列表或品牌ID列表 2. **URL生成策略**:根据品牌标识动态生成搜索页URL 3. **参数化请求**:将品牌标识作为请求参数传递给爬虫函数 4. **数据关联存储**:在结果中增加品牌归属字段 #### 二、具体实现步骤 ```python import requests from bs4 import BeautifulSoup import pandas as pd brands = ['nike', 'adidas', 'puma'] # 待爬品牌列表 base_url = "https://www.example.com/search?brand={brand}&page={page}" def multi_brand_crawler(max_page=5): all_products = [] for brand in brands: for page in range(1, max_page+1): # 动态生成品牌分页URL url = base_url.format(brand=brand, page=page) response = requests.get(url, headers={'User-Agent':'...'}) if response.status_code == 200: soup = BeautifulSoup(response.text, 'lxml') items = soup.select('div.product-card') for item in items: product = { 'brand': brand, # 添加品牌标识 'name': item.select_one('.title').text.strip(), 'price': item.select_one('.price').text.replace('$',''), # 其他字段... } all_products.append(product) time.sleep(1) # 控制请求频率[^1] pd.DataFrame(all_products).to_csv('multi_brand.csv', index=False) ``` #### 三、关键优化点 1. **动态页码检测**:通过解析分页器元素自动获取最大页数 ```python def get_max_page(soup): pagination = soup.select('ul.pagination li') return int(pagination[-2].text) if pagination else 1 ``` 2. **差异化解析**:针对不同品牌页面结构使用条件判断 ```python if brand == 'nike': price_selector = '.nike-price' elif brand == 'adidas': price_selector = '.three-stripes-price' ``` 3. **品牌参数化存储**:使用$f(brand)$函数处理品牌特定逻辑[^3] ```python brand_params = { 'nike': {'size': 50}, 'adidas': {'sort': 'price'} } ``` #### 四、异常处理增强 ```python from tenacity import retry, stop_after_attempt @retry(stop=stop_after_attempt(3)) def safe_request(url): try: return requests.get(url, timeout=10) except Exception as e: print(f"请求失败: {str(e)}") return None ``` #### 五、性能优化建议 1. **异步请求**:使用`aiohttp`库实现并发请求 ```python import aiohttp async def async_fetch(session, url): async with session.get(url) as response: return await response.text() ``` 2. **分布式任务**:通过`brand`参数实现任务分片 ```python # 使用Celery等分布式任务队列 @app.task def crawl_brand_task(brand): # 单个品牌的爬取逻辑 ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值