https://oj.leetcode.com/problems/3sum/
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)典型的双指针问题,把0-n[i]作为target,然后在剩余的数组中做2Sum就可以了。时间复杂度O(n^2).
因为输出中不能用重复,每次start++, end--都要把重复数字略过,外循环中i++的时候也要把重复数字略过。
public class Solution {
public List<List<Integer>> threeSum(int[] num) {
List<List<Integer>> rst = new ArrayList<List<Integer>>();
if(num==null || num.length<3) return rst;
Arrays.sort(num);
for(int i=0; i<num.length; i++){
int start = i+1;
int end = num.length-1;
int target = -num[i];
while(start<end){
int sum= num[start]+num[end];
if(sum<target){
start++;
while(start<num.length && num[start]==num[start-1]) start++;
}
else if(sum>target){
end--;
while(end>=0 && num[end]==num[end+1]) end--;
}
else{
List<Integer> sol = new ArrayList<Integer>();
sol.add(num[i]);
sol.add(num[start]);
sol.add(num[end]);
rst.add(sol);
start++;
while(start<num.length && num[start]==num[start-1]) start++;
end--;
while(end>=0 && num[end]==num[end+1]) end--;
}
}
while(i<(num.length-1) && num[i+1]==num[i]) i++;
}
return rst;
}
}