KAZE系列笔记:
1. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波
2. OpenCV学习笔记(28)KAZE 算法原理与源码分析(二)非线性尺度空间构建
3. OpenCV学习笔记(29)KAZE 算法原理与源码分析(三)特征检测与描述
4. OpenCV学习笔记(30)KAZE 算法原理与源码分析(四)KAZE特征的性能分析与比较
5. OpenCV学习笔记(31)KAZE 算法原理与源码分析(五)KAZE的性能优化及与SIFT的比较
KAZE算法资源:
1. 论文: http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla12eccv.pdf
2. 项目主页:http://www.robesafe.com/personal/pablo.alcantarilla/kaze.html
3. 作者代码:http://www.robesafe.com/personal/pablo.alcantarilla/code/kaze_features_1_4.tar
(需要boost库,另外其计时函数的使用比较复杂,可以用OpenCV的cv::getTickCount代替)
4. Computer Vision Talks的评测:http://computer-vision-talks.com/2013/03/porting-kaze-features-to-opencv/
5. Computer Vision Talks 博主Ievgen Khvedchenia将KAZE集成到OpenCV的cv::Feature2D类,但需要重新编译OpenCV

本文介绍了KAZE算法的性能分析与比较,探讨了KAZE与OpenCV API的融合,包括如何在不重新编译OpenCV的情况下使用KAZE,并通过与SURF、SIFT和STAR的比较,展示了KAZE在尺度和旋转不变性、可重复检测等方面的优越性。同时,文中也提到了KAZE在运行时间上的挑战,以及未来优化的方向。
最低0.47元/天 解锁文章
6752





