Description[Easy]
Let’s call an array arr
a mountain if the following properties hold:
arr.length >= 3
- There exists some i with 0 < i < arr.length - 1 such that:
arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
Given an integer array arr that is guaranteed to be a mountain, return any i such that arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
.
Solution1: Brute force
- Time Complexity: O(n)
- Space Complexity: O(1)
class Solution {
public int peakIndexInMountainArray(int[] arr) {
//Brute force
//Time Complexity: O(n)
for(int i = 0; i < arr.length-1; ++i ){
if( arr[i]> arr[i+1]){
return i;
}
}
return -1;
}
}
Solution2: Binary Search
- Time Complexity: O(log(n))
- Space Complexity: O(1)
class Solution {
public int peakIndexInMountainArray(int[] arr) {
int start = 0, end = arr.length -1;
while(start + 1 < end){
int mid = start + (end - start)/2;
if(arr[mid-1] < arr[mid]){
start = mid;
}
else{
end = mid;
}
}
if(arr[start] < arr[end]) return end;
return start;
}
}