Milvus 是一个开源的向量数据库,专为处理高维向量数据而设计,常用于大规模向量相似性搜索和基于向量的机器学习应用。它支持高效地管理、搜索和操作嵌入(如文本、图像、音频的特征向量),在推荐系统、图像检索、语义搜索等领域有广泛应用。
主要特性
-
高效的向量检索:
- 支持多种检索算法(如 HNSW、IVF、PQ),能够在大规模数据集上快速找到最相似的向量。
- 支持基于精确检索和近似检索的模式,可以根据需求选择性能与精度的平衡点。
-
可扩展性和高可用性:
- 设计为分布式系统,支持水平扩展,能够处理数十亿规模的向量。
- 提供了高可用性的特性,支持数据的备份与恢复。
-
多模态数据支持:
- 支持文本、图像、音频等多种数据类型,能够处理不同类型的数据的向量化表示。
-
自动分区和索引:
- 支持自动化的分区管理,能够根据数据的特性自动生成索引,提高查询效率。
-
高效的数据管理:
- 支持插入、更新、删除操作,同时支持批量操作,提高数据管理的效率。
- 支持与多种数据源的集成,如流数据、批处理数据等。
工作原理
Milvus 将数据以向量的形式存储,并支持向量的增删改查操作。其核心是基于向量相似度的检索机制,包括以下关键组件:
-
数据存储:
- Milvus 使用专门的存储格式来保存高维向量,支持内存和磁盘两种模式,以提高存储和检索效率。
-
索引构建:
- 支持多种索引类型(如 IVF_FLAT、IVF_SQ8、HNSW),通过构建适合的数据索引,优化向量相似性搜索。
-
检索算法:
- 提供了多种近似最近邻(ANN)算法,如 HNSW(Hierarchical Navigable Small World)、IVF(Inverted File)、PQ(Product Quantization),来加速大规模数据集的向量检索。
-
查询处理:
- 支持基于向量相似度的查询,如 KNN(k-nearest neighbors),通过查询向量找到最接近的向量集合。
-
数据分区:
- 自动管理数据的分区,以提高查询的效率。
使用示例
1. 安装 Milvus
Milvus 可以使用 Docker 快速部署:
docker run -d --name milvus-standalone \
-p <