文章目录
本次内容大纲:
结点设置
既然是链式二叉树,那必须得有自己的结点类型,以下是链式二叉树结点类型的定义,为了避免过多重复的代码,下面的问题都统一使用该结点类型。
typedef char BTDataType;//结点中存储的元素类型(以char为例)
typedef struct BTNode
{
BTDataType data;//结点中存储的元素类型
struct BTNode* left;//左指针域(指向左孩子)
struct BTNode* right;//右指针域(指向右孩子)
}BTNode;
二叉树的深度优先遍历

前序遍历
前序遍历,又叫先根遍历。
遍历顺序:根 -> 左子树 -> 右子树
代码:
//前序遍历
void BinaryPrevOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
//根->左子树->右子树
printf("%c ", root->data);
BinaryPrevOrder(root->left);
BinaryPrevOrder(root->right);
}
中序遍历
中序遍历,又叫中根遍历。
遍历顺序:左子树 -> 根 -> 右子树
代码:
void BinaryInOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
//左子树->根->右子树
BinaryInOrder(root->left);
printf("%c ", root->data);
BinaryInOrder(root->right);
}
后序遍历
后序遍历,又叫后根遍历。
遍历顺序:左子树 -> 右子树 -> 根
代码:
//后序遍历
void BinaryPostOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
//左子树->右子树->根
BinaryPostOrder(root->left);
BinaryPostOrder(root->right);
printf("%c ", root->data);
}
二叉树的广度优先遍历
层序遍历
层序遍历,自上而下,从左往右逐层访问树的结点的过程就是层序遍历。

思路(借助一个队列):
1.先把根入队列,然后开始从队头出数据。
2.出队头的数据,把它的左孩子和右孩子依次从队尾入队列(NULL不入队列)。
3.重复进行步骤2,直到队列为空为止。

特点:借助队列先进先出的性质,上一层数据出队列的时候带入下一层数据。
代码:
//层序遍历
void BinaryLevelOrder(BTNode* root)
{
Queue q;
QueueInit(&q);//初始化队列
if (root != NULL)
QueuePush(&q, root);
while (!QueueEmpty(&q))//当队列不为空时,循环继续
{
BTNode* front = QueueFront(&q);//读取队头元素
QueuePop(&q);//删除队头元素
printf("%c ", front->data);//打印出队的元素
if (front->left)
{
QueuePush(&q, front->left);//出队元素的左孩子入队列
}
if (front->right)
{
QueuePush(&q, front->right);//出队元素的右孩子入队列
}
}
QueueDestroy(&q);//销毁队列
}
结点的个数
求解树的结点总数时,可以将问题拆解成子问题:
1.若为空,则结点个数为0。
2.若不为空,则结点个数 = 左子树结点个数 + 右子树结点个数 + 1(自己)。
代码:
//结点的个数
int BinaryTreeSize(BTNode* root)
{
//结点个数 = 左子树的结点个数 + 右子树的结点个数 + 自己
return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}
叶子结点的个数
子问题拆解:
1.若为空,则叶子结点个数为0。
2.若结点的左指针和右指针均为空,则叶子结点个数为1。
3.除上述两种情况外,说明该树存在子树,其叶子结点个数 = 左子树的叶子结点个数 + 右子树的叶子结点个数。
代码:
//叶子结点的个数
int BinaryTreeLeafSize(BTNode* root)
{
if (root == NULL)//空树无叶子结点
return 0;
if (root->left == NULL&&root->right == NULL)//是叶子结点
return 1;
//叶子结点的个数 = 左子树的叶子结点个数 + 右子树的叶子结点个数
return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}
第k层结点的个数
思路:
相对于根结点的第k层结点的个数 = 相对于以其左孩子为根的第k-1层结点的个数 + 相对于以其右孩子为根的第k-1层结点的个数。

代码:
//第k层结点的个数
int BinaryTreeKLevelSize(BTNode* root, int k)
{
if (k < 1 || root == NULL)//空树或输入k值不合法
return 0;
if (k == 1)//第一层结点个数
return 1;

本文详细介绍了二叉树的各种遍历方法,包括前序遍历、中序遍历、后序遍历和层序遍历,以及结点的个数、叶子结点的个数、第k层结点的个数、值为x的结点、树的最大深度、翻转二叉树、判断两棵二叉树是否相同、是否为完全二叉树、是否为单值二叉树、是否对称、是否平衡以及是否为另一棵二叉树的子树等操作。此外,还涉及到了二叉树的销毁和深度遍历的接口型题目,以及二叉树的构建及中序遍历。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



