TOP K问题

TOP K

通用思路:

1、使用Hash取模的方法将大文件划分成若干小文件;

2、使用HashMap或者字典树(trie树)对小文件进行词频统计;

3、对小文件按照词频进行排序(堆排序等),取每个小文件的前N个;

4、将小文件的结果归并排序,再对归并后的文件取前N个。

有1亿个浮点数,如果找出期中最大的10000个?

对于第三部,首先读入前10000个数来创建大小为10000的最小堆,建堆的时间复杂度为O(mlogm)(m为数组的大小即为10000),然后遍历后续的数字,并于堆顶(最小)数字进行比较。如果比最小的数小,则继续读取后续数字;如果比堆顶数字大,则替换堆顶元素并重新调整堆为最小堆。整个过程直至1亿个数全部遍历完为止。然后按照中序遍历的方式输出当前堆中的所有10000个数字。

有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,...x4999)中。这样每个文件大概是200k左右。
如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

===============================================================

位图

原理:https://blog.youkuaiyun.com/xinzhongtianxia/article/details/81294922

给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

申请512MB的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位整数可以表示的最大十进制数值为99999999。如果每个数字对应于位图中一个bit位,那么存储8位整数大约需要99MB。因为1B=8bit,所以99Mbit折合成内存为99/8=12.375MB的内存,即可以只用12.375MB的内存表示所有的8位数电话号码的内容。

========================================================

布隆过滤器

原理:https://www.jianshu.com/p/2104d11ee0a2

参数确定:https://www.jianshu.com/p/28dd26aaf2ee

给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

如果使用布隆过滤器,那么问题就很好办了,4G的内存足以容纳300多亿的bit,所以足够处理了,先将a文件中的url都放入布隆过滤器,之后遍历b文件,对每个url都询问布隆过滤器看其是否已经存在,如果存在,则此条URL输入结果文件。

转载于:https://my.oschina.net/u/2286010/blog/3082043

<think>好的,我现在需要帮助用户了解Top K算法的相关概念、解决方法以及应用场景。首先,我应该回顾一下用户提供的引用内容,确保信息准确,并且正确引用。 首先,根据引用[1],TopK算法用于快速找出数据集中前K个最大或最小的元素,常见于电商和音乐应用。时间复杂度是O(nlogk),使用堆排序思想。引用[2]提到TopK的解决方案,比如全局排序,但可能效率不高,需要优化思路。引用[3]则详细说明了堆结构在TopK中的应用,特别是如何维护堆顶元素。 接下来,我需要组织回答的结构,按照用户的要求,分概念、解决方案、应用场景三个方面。每个部分要结合引用内容,并自然地添加引用标识。同时,需要确保使用正确的中文表达,数学公式用$...$或$$...$$格式,比如时间复杂度写成$O(n \log k)$。 在解决方案部分,要列出不同的方法,如全局排序、局部堆调整、快速选择算法,并比较它们的优缺点。这里需要注意引用[2]和[3]中的内容,尤其是堆的实现和优化思路。例如,堆方法的时间复杂度来自引用[1],而快速选择算法可能需要引用补充的知识,但用户提供的引用中没有提到,可能需要避免详细展开,或者仅简要提及。 应用场景部分,根据引用[1]和[2]中的例子,如电商、音乐推荐、排行榜等,需要具体说明每个场景如何应用TopK算法,并正确添加引用标记。 最后生成相关问题,确保问题TopK相关,覆盖实现细节、优化、应用场景比较等,参考示例中的问题结构。 需要检查LaTeX格式是否正确,例如时间复杂度中的log应该用斜体,即$\log$,确保所有数学表达式正确。例如,堆调整的时间复杂度是$O(n \log k)$,而不是O(nlogk)。 同时,避免使用Markdown格式,保持回答自然流畅。注意引用标识的位置,如每个引用出现在对应的解释末尾,如使用堆方法时引用[1]和[3]。 可能需要注意的地方:用户提供的引用中没有提到快速选择算法,所以这部分可能需要简要说明,但不要过于详细,或者可以指出这是另一种方法,但不在当前引用范围内。或者,可能用户希望仅基于提供的引用来回答,所以可能需要仅涵盖引用中的方法,即全局排序和堆方法,以及可能的其他方法如分治处理,但引用中没有明确提到,所以可能应避免引入外部知识。 综上所述,整理回答结构,确保每个部分正确引用,公式正确,问题相关且符合用户要求。</think>### Top K 算法详解 #### 一、核心概念 Top K 算法用于从大规模数据集中快速筛选出前$K$个最大或最小的元素,例如电商平台筛选销量最高的前10个商品,或音乐平台统计播放量前100的歌曲[^1]。其核心目标是通过优化时间复杂度(如$O(n \log K)$)避免全局排序的低效性。 #### 二、解决方案 1. **全局排序法** 将数据集完全排序后取前$K$个元素。例如对$n$个元素使用快速排序(时间复杂度$O(n \log n)$),但当$K \ll n$时效率较低[^2]。 *适用场景*:数据规模较小时。 2. **堆调整法** - **最小堆(求最大K个元素)**:维护一个容量为$K$的最小堆,遍历数据时若元素大于堆顶则替换堆顶并调整堆。时间复杂度为$O(n \log K)$[^3]。 - **最大堆(求最小K个元素)**:原理类似,但堆顶为最大值。 *代码片段*(Python实现最小堆): ```python import heapq def topk_max(arr, k): heap = [] for num in arr: if len(heap) < k: heapq.heappush(heap, num) elif num > heap[0]: heapq.heapreplace(heap, num) return heap ``` 3. **快速选择算法** 基于快速排序的分区思想,每次选取基准值将数据划分为两部分,仅在包含前$K$元素的区间递归操作。平均时间复杂度为$O(n)$,但最坏情况为$O(n^2)$。 #### 三、应用场景 1. **电商推荐**:实时更新销量Top 10商品 2. **社交平台**:计算用户粉丝数排行榜 3. **数据监控**:快速定位服务器访问量最高的IP地址 4. **金融风控**:识别交易金额异常的前K笔记录 #### 性能对比 | 方法 | 时间复杂度 | 空间复杂度 | 适用场景 | |--------------|------------------|------------|-----------------------| | 全局排序 | $O(n \log n)$ | $O(n)$ | 小规模数据 | | 堆调整 | $O(n \log K)$ | $O(K)$ | 数据流或大规模数据[^3]| | 快速选择 | $O(n)$(平均) | $O(1)$ | 允许修改原数组 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值