状态Dp[i][j]为前i件物品选j对的最优解
当i=j*2时,只有一种选择即 Dp[i-2][j-1]+(w[i]-w[i-1])^2
当i=j*2时,只有一种选择即 Dp[i-2][j-1]+(w[i]-w[i-1])^2
当i>j*2时,Dp[i][j] = min(Dp[i-1][j],Dp[i-2][j-1]+(w[i]-w[i-1])^2)
以为要开long long,结果爆了内存;
没想到排序,wa了好几次= =
// Created by Chenhongwei in 2015.
// Copyright (c) 2015 Chenhongwei. All rights reserved.
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
#include <queue>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <vector>
#include <sstream>
#include <algorithm>
using namespace std;
const int inf=1e9;
const int maxn=1e5+100;
typedef long long ll;
typedef unsigned long long ull;
int w[2020];
int dp[2004][1002];
int main()
{
//ios::sync_with_stdio(false);
// freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,k;
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(dp,0x3f,sizeof dp);
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
sort(w+1,w+n+1);
for(int i=0;i<=n;i++)
dp[i][0]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=k;j++)
{
if(j*2>i)
continue;
else
dp[i][j]=min(dp[i-1][j],dp[i-2][j-1]+(w[i]-w[i-1])*(w[i]-w[i-1]));
}
printf("%d\n",dp[n][k]);
}
return 0;
}