*寒假水42——The 3n+1 problem

本文介绍了一个简单的算法,该算法通过特定的数学操作序列来确定任意正整数输入的周期长度,并探讨了如何找出两个给定整数范围内所有整数的最大周期长度。
部署运行你感兴趣的模型镜像

 

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs. 

Consider the following algorithm: 


    1.      input n 

    2.      print n 

    3.      if n = 1 then STOP 

    4.           if n is odd then n <- 3n + 1 

    5.           else n <- n / 2 

    6.      GOTO 2 


Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.) 

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16. 

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j. 

InputThe input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0. 

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j. 

You can assume that no opperation overflows a 32-bit integer. 
OutputFor each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line). 
Sample Input

1 10
100 200
201 210
900 1000

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174

 

#include<stdio.h>
int main()
{
	int m,n,i,k,sum,max;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		printf("%d %d ",m,n);
		max=0;
		if(m>n){
			k=m;
			m=n;
			n=k;
		}
		for(i=m;i<=n;i++){
			k=i,sum=0;
			while(k!=1){
				if(k%2==0)
				    k=k/2;
			    else
				    k=3*k+1;
			    sum++;
			}
			if(sum+1>max){
				max=sum+1;
			}
		}
		printf("%d\n",max);
	}
	return 0;
}

题解:

       所谓错误,就是隔一段时间就要犯一回……不能让循环中的i直接参与运算~

【这么愚蠢,一定是因为我今年3岁】

您可能感兴趣的与本文相关的镜像

Qwen-Image

Qwen-Image

图片生成
Qwen

Qwen-Image是阿里云通义千问团队于2025年8月发布的亿参数图像生成基础模型,其最大亮点是强大的复杂文本渲染和精确图像编辑能力,能够生成包含多行、段落级中英文文本的高保真图像

内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值