机器学习实践
文章平均质量分 86
Checkmate9949
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【代码实践】使用Garch模型估计VaR
title: “Value at Risk estimation using GARCH model”author: “Ionas Kelepouris & Dimos Kelepouris”date: “July 6, 2019”output:html_document:fig_height: 7fig_width: 10highlight: tangotoc: yesknitr::opts_chunk$set(echo = TRUE , warning = FALSE , e.原创 2021-09-30 15:59:55 · 11330 阅读 · 3 评论 -
【代码实践】R语言,ugarchspec函数(待完善)
一、描述创建单变量GARCH二、用法ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1), submodel = NULL, external.regressors = NULL, variance.targeting = FALSE), mean.model = list(armaOrder = c(1, 1), include.mean = TRUE, archm = FALSE, archpo原创 2021-09-25 21:16:51 · 5498 阅读 · 1 评论 -
【代码实践】Garch和Arch的简单应用
Garch和Arch模型的简单应用1、Problem with VarianceAutoregressive models can be developed for univariate time series data that is stationary (AR), has a trend (ARIMA), and has a seasonal component (SARIMA).一元时间序列数据的自相关模型:平稳AR,趋势ARIMA,季节成分SARIMAOne aspect of a uni原创 2021-09-24 20:24:16 · 1764 阅读 · 0 评论 -
【算法检验】StepM和MCS
继上节SPA继续介绍StepM和MSC检验【算法检验】SPA_Checkmate9949的博客-优快云博客一、概念The multiple comparison procedures all allow for examining aspects of superior predictive ability.用于检验更优的预测能力There are three available:SPA - The test of Superior Predictive Ability, also known as原创 2021-09-18 18:59:20 · 4682 阅读 · 8 评论 -
【算法检验】SPA
一、概念The multiple comparison procedures all allow for examining aspects of superior predictive ability.用于检验更优的预测能力There are three available:SPA - The test of Superior Predictive Ability, also known as the Reality Check (and accessible as RealityChec原创 2021-09-18 17:30:25 · 3253 阅读 · 2 评论 -
【代码实践】BiLSTM【待完善】
1、算法思路Step 1: Calculate the daily cumulative sentiment score using the extracted news headlines related to crude oil price.Step 2: Decompose the target variable (i.e., the daily logarithmic returns and 7-day volatility) into different intrinsic modes u原创 2021-09-14 21:28:15 · 261 阅读 · 0 评论 -
【Bert】文本多标签分类
1. 算法介绍1.1 参考文献复旦大学邱锡鹏老师课题组的研究论文《How to Fine-Tune BERT for Text Classification?》。论文: https://arxiv.org/pdf/1905.05583.pdf1.2 论文思路旨在文本分类任务上探索不同的BERT微调方法并提供一种通用的BERT微调解决方法。这篇论文从三种路线进行了探索: (1) BERT自身的微调策略,包括长文本处理、学习率、不同层的选择等方法; (2) 目标任务内、领域内原创 2021-08-24 16:59:01 · 2872 阅读 · 1 评论 -
提取Oilprice新闻信息,并使用R包进行情感分析
1. 爬取Oil price2. 处理文本(1)Tokenization 分词中文分词:https://github.com/fxsjy/jieba原创 2021-08-24 15:58:52 · 546 阅读 · 0 评论
分享