hdu 5667 Sequence(矩阵快速幂+快速幂+费马小定理)(bestcoder# 80 1002)

针对特定递推序列fn,利用矩阵快速幂算法高效计算fn mod p。通过转换递推关系,构建矩阵运算,实现对大数值的有效处理。

Problem Description
     Holion August will eat every thing he has found.

     Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.

fn=1,ab,abfcn1fn2,n=1n=2otherwise

     He gives you 5 numbers n,a,b,c,p,and he will eat  fn  foods.But there are only p foods,so you should tell him  fn  mod p.
 

Input
     The first line has a number,T,means testcase.

     Each testcase has 5 numbers,including n,a,b,c,p in a line.

    1T10,1n1018,1a,b,c109 , p  is a prime number,and  p109+7 .
 

Output
     Output one number for each case,which is  fn  mod p.
 

Sample Input
  
1 5 3 3 3 233
 

Sample Output
  
190
 

Source
 

Recommend
wange2014   |   We have carefully selected several similar problems for you:   5674  5673  5672  5671  5670 
 

题目大意:

        给定如题目中所述的公式,求出f(n)mod p,p是素数

解题思路:

        观察公式并手写几项下来,可以发现a^b总是一起出现并且只有指数发生了变化,所以设g(n)=log f(n)  (以a^b为底)

        根据公式:g(n)=1+c*g(n-1)+g(n-2) mod phi(p) (n>=2) 注意是phi(p),那么就可以用矩阵快速幂:(A^表示A的转置)

          (g(n),g(n-1),1)^=(c,1,1;  1,0,0;  0,0,1;)*(g(n-1),g(n-2),1)^ 根据g(1),g(2)的值算出需要的g(n)来。

        之后用快速幂(a^b)^g(n) mod p可以得出f(n)

        注:这种方法没有遇出题人t说的坑点

#include<stdio.h>
#include<stdio.h>
#include<iostream>
#define ll long long
#define rush() int t;scanf("%d",&t);while(t--)
using namespace std; 
struct mat { ll a[3][3]; };
ll mod,mod1;
mat operator * (mat a, mat b)
{
	mat ans;
	memset(ans.a, 0, sizeof(ans.a));
	for (int i = 0; i < 3; i++)
		for (int j = 0; j < 3; j++)
			for (int k = 0; k < 3; k++)
			{
				ans.a[i][j] += (a.a[i][k] * b.a[k][j]) % (mod-1);
				ans.a[i][j] %= mod-1;
			}
	return ans;
}
mat qpow(mat a, ll n)
{
	mat ans;
	memset(ans.a, 0, sizeof(ans.a));
	for (int i = 0; i < 3; i++)ans.a[i][i] = 1;
	while (n)
	{
		if (n & 1)ans = ans*a;
		a = a*a;
		n >>= 1;
	}
	return ans;
}
ll qpow(ll a, ll b)
{
	ll ans = 1;
	while (b)
	{
		if (b & 1)ans = (ans*a)%mod;
		a =(a*a)%mod;
		b >>= 1;
	}
	return ans;
}/*
ll phi(ll n)
{
	ll temp;
	temp = n;
	for (int i = 2; i*i <= n; i++)
	{
		if (n%i == 0)
		{
			while (n%i == 0) n = n / i;
			temp = temp / i*(i - 1);
		}
		if (n<i + 1)
			break;
	}
	if (n>1)
		temp = temp / n*(n - 1);
	return temp;
}*/
int main()
{
	rush()
	{
		mat tem;
		ll a, b, n,c;
		cin >> n >> a >> b >> c>>mod;
		ll k = qpow(a, b);
		if (n == 1) {cout<<'1'<<endl; continue; }
		else if (n == 2) { cout << k << endl; continue; }
		else
		{
			tem.a[0][0] = c;
			tem.a[0][1] = 1;
			tem.a[0][2] = 1;
			tem.a[1][0] = 1;
			tem.a[1][1] = 0;
			tem.a[1][2] = 0;
			tem.a[2][0] = 0;
			tem.a[2][1] = 0;
			tem.a[2][2] = 1;
			tem = qpow(tem, n - 2);//不能用phi(n-2)
			ll ans = ((tem.a[0][0]%(mod-1) + tem.a[0][2]%(mod-1)) % (mod-1) + mod-1) % (mod-1);
			ans = qpow(k, ans);
			cout << ans << endl;
		}
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值