HDU 1028 Ignatius and the Princess III(DP,整数划分)

本文介绍了一个经典的整数划分问题,通过动态规划方法求解给定正整数N的不同划分方式的数量。文章提供了完整的代码实现,并解释了状态转移方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22498    Accepted Submission(s): 15713


Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input
4 10 20
 

Sample Output
5 42 627
 

Author

Ignatius.L


刚开始的时候,我一直以为这是一道纯数学规律题,天真的以为可以一行公式代码ac,后来发现确实找不到规律QAQ;

再仔细分析一下题目,觉得这应该是一道DP题,因为大数的结果是和其往下分的小数密切相关的,所以就成了一道整数划分题;

状态转移方程:dp[i][j]=dp[i][j-1]+dp[i-j][j];(dp[i][j]表示将i进行划分,最大的数不超过j的方案个数);

于是题目变得非常简单。


#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
int dp[122][122];
int main(){
    for(int i=0;i<122;i++)
        dp[i][1]=dp[1][i]=dp[0][i]=1;
    for(int i=2;i<122;i++){
        for(int j=2;j<122;j++){
            if(j<=i)
                dp[i][j]=dp[i][j-1]+dp[i-j][j];
            else
                dp[i][j]=dp[i][i];
        }
    }
    int n;
    while(~scanf("%d",&n)){
        printf("%d\n",dp[n][n]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值