A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.

Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in
lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 41 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2题意:大致是 输入n个正整数,把整数1,2,3,。。。。,n组成一个环,使得相邻的两个整数之和均为素数,同一个环应恰好输出一次。<pre name="code" class="cpp">/* 算法思路:从i=1开始进行往后面进行搜索。然后依次判断 a[i]+a[i+1]是否为素数,其实本题不用搜索也可以的, 只要依次把他们进行相加就行了 TLE 用枚举的话,用两重循环,依次相加,但是要找出一整串的数据还是会超时的 */ #include<stdio.h> #include<string.h> #define max 21 int a[max]; int vis[max]; int n; int Case=1; /* 判断是否为素数的一个函数 */ int isp(int i) { if(i==1||i==2) return 1; else for(int j=2;j<i;j++) if(i%j==0) return 0; return 1; } /* 搜索函数的构造 */ void dfs(int cur) { if(cur==n&&isp(a[0]+a[n-1]))//也可以说是边界判断吧,当搜索的cur到了n时,就可以停止了,注意还要判断第一个和最后一个是否相等 { for(int i=0;i<n-1;i++) printf("%d ",a[i]); printf("%d",a[n-1]);//格式控制 printf("\n"); } else for(int i=2;i<=n;i++)//依次往后面进行判断 if(!vis[i]&&isp(i+a[cur-1]))//判断这个数是否被用过,算是剪枝吧,然后判断当前的数和前面这个数和是否为素数 { a[cur]=i;//如果是素数的话就把这个值赋值到这个表里面 vis[i]=1;//标记这个数已经用过 dfs(cur+1);//继续回溯,搜索下面这个数的一条新的素数路径 vis[i]=0;//再把值回到原来的 } } int main() { while(scanf("%d",&n)!=EOF) { memset(vis,0,sizeof(vis)); a[0]=1;//将搜索值为1 printf("Case %d:\n",Case); dfs(1);//搜索为1从一开始进行搜索 Case++; printf("\n"); } return 0; }