BC - Untitled

本文介绍了一种算法问题,旨在找到从给定的整数集合中选取若干个数并按特定规则操作,使得初始整数通过一系列取余操作变为0所需的最小步骤数。若无法实现则返回-1。
Problem Description
There is an integer a and n integers b1,,bn. After selecting some numbers from b1,,bn in any order, say c1,,cr, we want to make sure that a mod c1 mod c2 mod mod cr=0 (i.e., a will become the remainder divided by ci each time, and at the end, we want a to become 0). Please determine the minimum value of r. If the goal cannot be achieved, print 1 instead.
 

Input
The first line contains one integer T5, which represents the number of testcases.

For each testcase, there are two lines:

1. The first line contains two integers n and a (1n20,1a106).

2. The second line contains n integers b1,,bn (1in,1bi106).
 

Output
Print T answers in T lines.
 

Sample Input
2 2 9 2 7 2 9 6 7
 

Sample Output
2 -1
      第一次打BC的第一道题,比赛结束前没A出来。这道题方法其实和poj1753一样,枚举步数然后在DFS找当前步数下所有元素能否构成符合题意的情况。此题关键在于要对b数组由大到小排序。排序之后只需要依次遍历如1,2,3;1,2,4;1,3,4;因为该题是不断对a取余,如果先对小的数取余那么余数一定比小的还要小,那么这时再对较大的数取余没有任何意义。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#define INF 0x3f3f3f3f

int cmp(int x,int y)
{
    return x>y;
}
using namespace std;
int arr[100];
int vis[100];
int ans,k,z;
int flag;

void fun(int step,int m,int a)
{
    int i;
    if(step==k)
    {
        for (i=1;i<z;i++)
        {
            if(vis[i])
                a %= arr[i];
            if(a==0)
                {flag=1;ans=step;return;}
        }
    }
    for (i=m+1;i<z;i++)
    {
        vis[i]=1;
        fun(step+1,i,a);
        if(flag) return;
        vis[i]=0;
    }
}
int main()
{
    int t,n,a,x,i;
    scanf("%d",&t);
    while (t--)
    {
        flag=0;z=1;
        scanf("%d%d",&n,&a);
        for ( i=1;i<=n;i++)
        {
            scanf("%d",&x);
            if(x<=a) arr[z++]=x;
        }
        sort(arr+1,arr+z,cmp);
        for (i=1;i<z;i++)
        {
            memset(vis,0,sizeof(vis));
            k=i;
            fun(0,-1,a);
            if(flag) break;
        }
        if(!flag)
            printf("-1\n");
        else
            printf("%d\n",ans);
    }
}



(dify) root@p-03bc3295a0a9-ackcs-00gjelba:~# ls -la total 124 drwx------ 20 root root 4096 May 23 09:05 . dr-xr-xr-x 21 root root 4096 May 18 16:50 .. -rw------- 1 root root 7584 May 23 09:08 .bash_history -rw-r--r-- 1 root root 4086 May 20 21:56 .bashrc lrwxrwxrwx 1 root root 23 May 12 17:20 .cache -> /root/shared-nvme/cache drwxr-xr-x 4 root root 4096 May 12 14:49 .cargo drwxr-xr-x 2 root root 4096 May 12 18:00 .conda drwxr-xr-x 5 root root 4096 May 12 18:27 .config -rw-r--r-- 1 root root 0 May 10 19:53 .container_first_init drwxr-xr-x 12 root root 4096 May 23 09:07 dify -rw-r--r-- 1 root root 3817 Apr 28 17:15 docker.gpg -rw-r--r-- 1 root root 749 May 12 17:31 environment.yml drwxr-xr-x 2 root root 4096 May 10 19:53 .ipynb_checkpoints drwxr-xr-x 3 root root 4096 May 10 19:53 .ipython drwxr-xr-x 5 root root 4096 May 10 19:53 .jupyter -rw------- 1 root root 20 May 15 16:23 .lesshst drwxr-xr-x 5 root root 4096 May 13 09:55 .local drwxr-xr-x 3 root root 4096 May 10 21:02 .modelscope drwxr-xr-x 5 root root 4096 May 21 19:49 .n8n drwxr-xr-x 5 root root 4096 May 19 22:28 .npm -rw------- 1 root root 40 May 19 22:50 .npmrc drwx------ 3 root root 4096 May 10 20:12 .nv drwxr-xr-x 2 root root 4096 Apr 15 2024 .pip -rw-r--r-- 1 root root 182 May 12 14:47 .profile -rw------- 1 root root 314 May 21 19:06 .python_history drwxr-xr-x 6 root root 4096 May 12 14:47 .rustup drwxr-xr-x 10 root root 12 May 21 16:42 shared-nvme drw------- 2 root root 4096 May 10 19:53 .ssh drwxr-xr-x 3 root root 4096 May 10 21:38 .triton -rw-r--r-- 1 root root 72 May 10 19:53 Untitled.ipynb -rw------- 1 root root 879 May 10 20:10 .viminfo drwxr-xr-x 2 root root 4096 May 10 19:53 .vscode -rw-r--r-- 1 root root 349 May 18 16:43 .wget-hsts (dify) root@p-03bc3295a0a9-ackcs-00gjelba:~#
05-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值