一、快速幂【51nod1013】
求:3^0 + 3^1 +…+ 3^(N) mod 1000000007
Input
输入一个数N(0 <= N <= 10^9)
Output
输出:计算结果
Sample Input
3
Sample Output
40
【分析】
利用等比数列的求和公式得所求和是(3(n+1)-1)/2,如果暴力求3(n+1)会超时,这里引入快速幂来加速。
思想类似这样,比如求38,直接求的话就是8个3相乘,可以转换成4个9相乘,继续转换成2个81相乘,这样大大缩短了计算时间。而快速幂的思想,则是把幂当成二进制数,依次进行右移位运算,大大减少了运算次数,比如求310,此时幂是10=1010(2),规定幂模2等于1即幂&1等于1时,右移1位运算,并乘进结果,计算310其实就是拆成了38和3^2这两个数相乘,快速幂代码具体实现结合本题如下示范:
【乘法逆元问题】
满足ak=1(mod p)的k值就是a关于p的乘法逆元。
(a/b)mod p=(ak)mod p
关于逆元的求法后续博客会补充,本题中的k=(1e9+7+1)/2
#include<iostream>
using namespace std;
const int mod=1e9+7;
long long mul(long long x,long long n)
{
long long result=1,s=x;
for(;n>0;n>>=1)
{
if(n&1)result=result*s%mod;
s=s*s%mod;
}
return result;
}
int main()
{
long long n;
while(cin>>n)
{
cout<<((mul(3,n+1)-1%mod)%mod)*((mod+1)/2)%mod<<endl;
}
return 0;
}
二、矩阵快速幂Fibonacci POJ - 3070
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
AC代码:
矩阵快速幂和数的快速幂很类似,具体实现代码如下。【注意其中如果大数相乘可以使用俄罗斯农民乘法加速】
#include<iostream>
#include<cstring>
using namespace std;
const int mod=10000;
//俄罗斯农民乘法
long long pro(long long a,long long b)
{
long long ret=0;
for(;b>0;b>>=1)
{
if(b&1)ret=(ret+a)%mod;
a=(a+a)%mod;
}
return ret;
}
class matrix
{
public:
int n,m;
int d[3][3];
matrix(int a=0,int b=0)
{
n=a,m=b;
memset(d,0,sizeof(d));
}
void _copy(int*t)
{
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
d[i][j]=*t++;
}
friend matrix operator * (const matrix &a,const matrix &b)
{
matrix c(a.n,b.m);
for(int i=0;i<a.n;i++)
for(int j=0;j<b.m;j++)
{
long long tmp=0;
for(int k=0;k<a.m;k++)
{
//tmp+=(long long)a.d[i][k]*b.d[k][j]%mod;
tmp+=pro((long long)a.d[i][k],(long long)b.d[k][j])%mod;
tmp%=mod;
}
c.d[i][j]=tmp;
}
return c;
}
};
int solve(int n)
{
if(n==0)return 0;
matrix a,b;
a.n=a.m=b.n=b.m=2;
int aa[2*2]={
1,1,
1,0
};
int bb[2*2]={
1,1,
1,0
};
a._copy(aa);
b._copy(bb);
for(int i=n;i>0;i>>=1)
{
if(i&1)a=a*b;
b=b*b;
}
return a.d[1][1];
}
int main()
{
int n;
while(cin>>n)
{
if(n==-1)break;
cout<<solve(n)<<endl;
}
return 0;
}
三、矩阵快速幂Matrix Power Series POJ - 3233
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
【提示】
本题如下直接求解为TLE
超时代码1:
for(int i=1;i<=k;i++)
{
result=add(mul(result,m),m);
}
超时代码2:
for(int i=1;i<=k;i++)
{
matrix tmp;
tmp=fast_pow(m,i);
result=add(tmp,result);
}
优化方法是利用递归的方式解决,列举其中两个和,比如(E是单位阵):
S(6)=A+A2+…+A6=(A+A2+A3)(E+A3)=S(3)*(E+A3)
S(7)=A+A2+…+A7=A+(A2+A3+A4)(E+A3)=A+S(3)(A+A^4)
通过观察这两个有代表性的前6、7项和,可以很快写出递归求解前k项和的函数,可以有效解决TLE
另外,注意本题用于运算的二维数组矩阵,如果定义成long long会TLE,要定义成int
AC代码:
#include<iostream>
#include<cstring>
using namespace std;
int mod;
typedef struct
{
int n,m;
int d[50][50];
}matrix;
matrix mul(matrix a,matrix b)
{
matrix c;
c.n=a.n,c.m=b.m;
for(int i=0;i<a.n;i++)
for(int j=0;j<b.m;j++)
{
int tmp=0;
for(int k=0;k<a.m;k++)
{
tmp+=a.d[i][k]*b.d[k][j]%mod;
tmp%=mod;
}
c.d[i][j]=tmp;
}
return c;
}
matrix fast_pow(matrix a,int n)
{
matrix c;
memset(c.d,0,sizeof(c.d));
c.n=a.n,c.m=a.m;
for(int i=0;i<a.n;i++)
c.d[i][i]=1;
for(;n>0;n>>=1)
{
if(n&1)c=mul(a,c);
a=mul(a,a);
}
return c;
}
matrix add(matrix a,matrix b)
{
matrix c;
c.n=a.n,c.m=a.m;
for(int i=0;i<a.n;i++)
for(int j=0;j<a.m;j++)
{
c.d[i][j]=(a.d[i][j]+b.d[i][j])%mod;
}
return c;
}
matrix solve(matrix m,int k)//递归求解前k项和
{
if(k==1)return m;
matrix a=fast_pow(m,(k+1)/2);
matrix b=solve(m,k/2);
if(k&1)
{
return add(m,mul(b,add(m,a)));
}
else
{
return mul(b,add(a,fast_pow(a,0)));
}
}
int main()
{
int n,k;
matrix m;
matrix result;
cin>>n>>k>>mod;
m.m=m.n=n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
cin>>m.d[i][j];
}
result=solve(m,k);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cout<<result.d[i][j]<<" ";
}
cout<<endl;
}
return 0;
}