Description
In the Fibonacci integer sequence, F0= 0, F1 = 1, and Fn = Fn− 1 + Fn − 2 for n ≥ 2. For example,the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute thelast 4 digits of Fn.
Input
The input test file will contain multiple test cases.Each test case consists of a single line containing n (where 0 ≤ n ≤1,000,000,000). The end-of-file is denoted by a single line containing thenumber −1.
Output
For each test case, print the last four digits of Fn.If the last four digits of Fn are all zeros, print ‘0’;otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative,and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0thpower gives the identity matrix:
.
题目简介:求Fibonacci的n项的最后四位上的数字。
方法:快速幂。注意特殊的n=0。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define P 10000
struct multiply
{
int f[2][2];
};
struct multiply M(struct multiply a,struct multiply b)
{
struct multiply c;
int i, j, k;
memset(c.f,0,sizeof(c.f));
for(i = 0;i<2;i++)
{
for(j = 0;j<2;j++)
{
for(k = 0;k<2;k++)
{
c.f[i][j]=(c.f[i][j] + (a.f[i][k] * b.f[k][j]) % P ) % P;
}
}
}
return c;
};
struct multiply solve(struct multiply a,int x)
{
if(x==1)
{
return a;
}
struct multiply b = solve(a,x/2);
if(x&1)
{
return M(M(b, b), a);
}
else
return M(b, b);
};
int main()
{
long long int n;
struct multiply F, ans;
F.f[0][0] = 0;
F.f[0][1] = 1;
F.f[1][0] = 1;
F.f[1][1] = 1;
while(scanf("%lld",&n)&&n!=-1)
{
if(n==0)
{
printf("0\n");
continue;
}
ans = solve(F,n);
printf("%d\n",ans.f[1][0]);
}
return 0;
}