使用Hive可以高效而又快速地编写复杂的MapReduce查询逻辑。但是某些情况下,因为不熟悉数据特性,或没有遵循Hive的优化约定,Hive计算任务会变得非常低效,甚至无法得到结果。一个”好”的Hive程序仍然需要对Hive运行机制有深入的了解。
有一些大家比较熟悉的优化约定包括:Join中需要将大表写在靠右的位置;尽量使用UDF而不是transfrom……诸如此类。下面讨论5个性能和逻辑相关的问题,帮助你写出更好的Hive程序。这篇主要讲怎样写exist in子句。
Hive不支持where子句中的子查询,SQL常用的exist in子句需要改写。这一改写相对简单。考虑以下SQL查询语句:
SELECT a.key, a.value
FROM a
WHERE a.key in
(SELECT b.key
FROM B);
可以改写为
SELECT a.key, a.value
FROM a LEFT OUTER JOIN b ON (a.key = b.key)
WHERE b.key NULL;
一个更高效的实现是利用left semi join改写为:
SELECT a.key, a.val
FROM a LEFT SEMI JOIN b on (a.key = b.key);
left semi join是0.5.0以上版本的特性。

文章探讨了如何在Hive中优化existin子句的查询性能,提出将子查询改写为LEFTOUTERJOIN或LEFTSEMIJOIN的方法,特别是利用leftsemijoin提升效率,强调了理解Hive运行机制对于编写高效Hive程序的重要性。
346

被折叠的 条评论
为什么被折叠?



