B树是什么?
->B树是一颗多路平衡查找树
B树有什么特点?
->a.B树每个结点的关键字数量x,m是阶数,向上取整m/2-1<=x<=m-1
b.B树的所有叶子结点都在一层
c.父母至少有两子女
下图即为一颗5阶B树

B树插入图示

以插入1-18的一颗五阶B树为例
首先从0开始插入元素:

此时关键字达到了五个,我们知道五阶B树允许的关键字在[2,4],显然此时的关键字超出了范围
所以我们执行分裂:

再在叶子结点中找到合适的位置进行元素的插入
....

代码实现
接口
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int level;//B树的阶数
int keyNum;//关键字的个数
int childNum;//孩子个数
int* keys;//关键字数组
struct Node** children;//要改变孩子的值所以传递二级指针
struct Node* parent;//父亲指针
}Node;
Node* initNode(int level) ;//初始化
int findSuiteIndex(Node* node, int data);//找到合适的索引
Node* findSuiteLeafNode(Node* T, int data) ;//找到合适的叶子结点
void addData(Node* node, int data, Node** T) ;添加数据
void insert(Node** T, int data) ;//插入数据
void printTree(Node* T) ;
接口实现
Node* initNode(int level) {
Node* node = (Node*)malloc(sizeof(Node));//开辟空间
node->level = level;
node->keyNum = 0;
node->childNum = 0;
node->keys = (int*)malloc(sizeof(int) * (level + 1));
node->children = (Node**)malloc(sizeof(Node*) * level);
node->parent = NULL;
int i;
for (i = 0; i < level; i++) {
node->keys[i] = 0;
node->children[i] = NULL;
}
node->keys[i] = 0;
return node;
}
//在结点处找到合适的插入索引
int findSuiteIndex(Node* node, int data) {
//每个结点由多个关键字组成
int index;
for (index = 1; index <= node->keyNum; index++) {
if (data < node->keys[index]) {
break;
}
}
return index;
}
//找到合适叶子结点
Node* findSuiteLeafNode(Node* T, int data) {
if (T->childNum == 0) {
return T;
}
else {
int index = findSuiteIndex(T, data);
return findSuiteLeafNode(T->children[index - 1], data);//因为分支在关键字数组的间隙,找到在关键字合适的索引之后,返回该结点第索引-1的孩子即是合适的叶子结点
}
}
void addData(Node* node, int data, Node** T) {
int index = findSuiteIndex(node, data);//前提已找到合适叶子结点
for (int i = node->keyNum; i >= index; i--) {
node->keys[i + 1] = node->keys[i];//挪位置
}
node->keys[index] = data;
node->keyNum++;//关键字个数++
// 判断是否进行分裂
if (node->keyNum == node->level) {
// 找到分裂位置
int mid = node->level / 2 + node->level % 2;
// 分裂
//开辟两个新空间作为左右孩子
Node* lchild = initNode(node->level);
Node* rchild = initNode(node->level);
//赋值
for (int i = 1; i < mid; i++) {
//逻辑一致
addData(lchild, node->keys[i], T);
}
for (int i = mid + 1; i <= node->keyNum; i++) {
addData(rchild, node->keys[i], T);
}
for (int i = 0; i < mid; i++) {
lchild->children[i] = node->children[i];
if (node->children[i] != NULL) {
node->children[i]->parent = lchild;
lchild->childNum++;
}
}
int index = 0;
for (int i = mid; i < node->childNum; i++) {
rchild->children[index++] = node->children[i];
if (node->children[i] != NULL) {
node->children[i]->parent = rchild;
rchild->childNum++;
}
}
//赋值结束
// 对父亲进行判断
if (node->parent == NULL) {
Node* newParent = initNode(node->level);
addData(newParent, node->keys[mid], T);
newParent->children[0] = lchild;
newParent->children[1] = rchild;
newParent->childNum = 2;
lchild->parent = newParent;
rchild->parent = newParent;
*T = newParent;
}
else {
int index = findSuiteIndex(node->parent, node->keys[mid]);//在父亲结点中找到合适位置
lchild->parent = node->parent;
rchild->parent = node->parent;
node->parent->children[index - 1] = lchild;
if (node->parent->children[index] != NULL) {
for (int i = node->parent->childNum - 1; i >= index; i--) {
node->parent->children[i + 1] = node->parent->children[i];//挪位置
}
}
node->parent->children[index] = rchild;
node->parent->childNum++;
addData(node->parent, node->keys[mid], T);
}
}
}
void insert(Node** T, int data) {
Node* node = findSuiteLeafNode(*T, data);
addData(node, data, T);
}
void printTree(Node* T) {
if (T != NULL) {
for (int i = 1; i <= T->keyNum; i++) {
printf("%d ", T->keys[i]);
}
printf("\n");
for (int i = 0; i < T->childNum; i++) {
printTree(T->children[i]);
}
}
}
测试
int main() {
Node* T = initNode(5);
insert(&T, 1);
insert(&T, 2);
insert(&T, 3);
insert(&T, 4);
insert(&T, 5);
insert(&T, 10);
insert(&T, 15);
insert(&T, 17);
insert(&T, 19);
insert(&T, 20);
insert(&T, 21);
insert(&T, 22);
insert(&T, 23);
insert(&T, 24);
insert(&T, 6);
insert(&T, 7);
insert(&T, 8);
printTree(T);
return 0;
}
本文详细介绍了B树的概念、特点,特别是5阶B树的插入过程,以及使用C语言实现的B树节点结构和关键操作,如初始化、查找索引、插入数据和分裂节点。
636

被折叠的 条评论
为什么被折叠?



