数据结构C语言版-求关键路径(纯C代码)

为什么需要拓扑排序?

:原因是因为拓扑排序可以保证我们活动的依赖关系顺序进行计算,即某个结点的前驱一定位于该结点前

接口

#include <stdio.h>
#include <stdlib.h>
#define MAX 65535

typedef struct Graph {
	char* vexs;
	int** arcs;
	int vexNum;
	int arcNum;
} Graph;

typedef struct Node {
	int data;
	struct Node* next;
} Node;
Node* initStack() ;//栈的初始化
int isEmpty(Node* stack) ;//判断栈是否为空
void push(Node* stack, int data) ;//入栈
int pop(Node* stack) ;//出栈
int* findInDegrees(Graph* G) ;//找到入度
Graph* initGraph(int vexNum) ;//图的初始化
int* topologicalSort(Graph* G) ;//拓扑排序并返回键结果
void createGraph(Graph* G, char* vexs, int* arcs) ;//创建图
int getIndex(Graph* G, int* top, int i) ;//获得其在拓扑数组中的索引
void criticalPath(Graph* G) ;//求得关键路径
void DFS(Graph* G, int* visited, int index) ;//深度优先遍历

    

接口实现

int isEmpty(Node* stack) {
	if (stack->next == NULL) {
		return 1;
	}
	else {
		return 0;
	}
}

void push(Node* stack, int data) {
	Node* node = (Node*)malloc(sizeof(Node));
	node->data = data;
	node->next = stack->next;
	stack->next = node;
	stack->data++;
}

int pop(Node* stack) {
	if (!isEmpty(stack)) {
		Node* node = stack->next;
		stack->next = node->next;
		return node->data;
	}
	else {
		return -1;
	}
}

int* findInDegrees(Graph* G) {
	int* inDegrees = (int*)malloc(sizeof(int) * G->vexNum);
	for (int i = 0; i < G->vexNum; i++) {
		inDegrees[i] = 0;
	}
	for (int i = 0; i < G->vexNum; i++) {
		for (int j = 0; j < G->vexNum; j++) {
			if (G->arcs[i][j] > 0 && G->arcs[i][j] != MAX)
				inDegrees[j] = inDegrees[j] + 1;
		}
	}
	return inDegrees;
}
int* topologicalSort(Graph* G) {
	int index = 0;
	int* top = (int*)malloc(sizeof(int) * G->vexNum);
	int* inDegrees = findInDegrees(G);
	Node* stack = initStack();
	for (int i = 0; i < G->vexNum; i++) {
		if (inDegrees[i] == 0) {
			push(stack, i);
		}
	}
	while (!isEmpty(stack)) {
		int vex = pop(stack);
		top[index++] = vex;
		for (int i = 0; i < G->vexNum; i++) {
			if (G->arcs[vex][i] > 0 && G->arcs[vex][i] != MAX) {
				inDegrees[i] = inDegrees[i] - 1;
				if (inDegrees[i] == 0) push(stack, i);
			}
		}
	}
	for (int i = 0; i < index; i++) {
		printf("%c ", G->vexs[top[i]]);
	}
	printf("\n");
	return top;
}

Graph* initGraph(int vexNum) {
	Graph* G = (Graph*)malloc(sizeof(Graph));
	G->vexs = (char*)malloc(sizeof(char) * vexNum);
	G->arcs = (int**)malloc(sizeof(int*) * vexNum);
	for (int i = 0; i < vexNum; i++) {
		G->arcs[i] = (int*)malloc(sizeof(int) * vexNum);
	}
	G->vexNum = vexNum;
	G->arcNum = 0;
	return G;
}

void createGraph(Graph* G, char* vexs, int* arcs) {
	for (int i = 0; i < G->vexNum; i++) {
		G->vexs[i] = vexs[i];
		for (int j = 0; j < G->vexNum; j++) {
			G->arcs[i][j] = *(arcs + i * G->vexNum + j);
			if (G->arcs[i][j] > 0 && G->arcs[i][j] != MAX) G->arcNum++;
		}
	}
}
int getIndex(Graph* G, int* top, int i) {
	//想要知道i在拓扑数组中的索引
	int j;
	for (j = 0; j < G->vexNum; j++) {
		if (top[j] == i) {
			//此时找到了
			break;
		}
	}
	return j;
}
void criticalPath(Graph* G) {
	//先得到拓扑序列
	//为什么?
	//因为拓扑排序可以保证我们活动的依赖关系顺序进行计算,即所有结点的前驱一定位于他之前.
	int* top = topologicalSort(G);
	//开辟early数组和late数组,都对应拓扑序列的值
	int* early = (int*)malloc(sizeof(int) * G->vexNum);
	int* late = (int*)malloc(sizeof(int) * G->vexNum);
	//初始化
	for (int i = 0; i < G->vexNum; i++) {
		early[i] = 0;
		late[i] = 0;
	}
	//计算最早发生时间
	for (int i = 0; i < G->vexNum; i++) {
		int max = 0;//计算最早发生时间需取前面路径最大值
		for (int j = 0; j < G->vexNum; j++) {
			if (G->arcs[j][top[i]] > 0 && G->arcs[j][top[i]] != MAX) {
				int index = getIndex(G, top, j);//找到其在拓扑序列中的索引
				if (early[index] + G->arcs[j][top[i]] > max) {
					max = early[index] + G->arcs[j][top[i]];
				}
			}
		}
		early[i] = max;
	}
	//计算最晚发生时间
	late[(G->vexNum) - 1] = early[(G->vexNum) - 1];//两者相等
	for (int i = (G->vexNum) - 2; i >= 0; i--) {
		int min = MAX;
		for (int j = 0; j < G->vexNum; j++) {
			if (G->arcs[top[i]][j] > 0 && G->arcs[top[i]][j] != MAX) {
				int index = getIndex(G, top, j);
				if (late[index] - G->arcs[top[i]][j] < min) {
					min = late[index] - G->arcs[top[i]][j];
				}
			}
		}
		late[i] = min;
	}
	for (int i = 0; i < G->vexNum; i++) {
		printf("%d ", early[i]);//输出early数组
	}
	printf("\n");
	for (int i = 0; i < G->vexNum; i++) {
		printf("%d ", late[i]);//输出拉late数组
	}
	//求关键路径(时间余量==0)
	for (int i = 0; i < G->vexNum; i++) {
		for (int j = 0; j < G->vexNum; j++) {
			if (G->arcs[i][j] > 0 && G->arcs[i][j] != MAX) {
				//为什么此处是G->arcs[i][j]?
				//因为此时要求得路径,则按照顶点集来
				int start = getIndex(G, top, i);
				int end = getIndex(G, top, j);
				if (early[start] == (late[end] - G->arcs[i][j])) {//弧的最早发生时间-弧的最晚发生时间
					printf("start=%d end=%d\n", i, j);//相等即输出
				}
			}
		}
	}
}
void DFS(Graph* G, int* visited, int index) {
	printf("%c ", G->vexs[index]);
	visited[index] = 1;
	for (int i = 0; i < G->vexNum; i++) {
		if (G->arcs[index][i] > 0 && G->arcs[index][i] != MAX && !visited[i]) {
			DFS(G, visited, i);
		}
	}
}

测试

int main() {
	Graph* G = initGraph(9);
	int* visited = (int*)malloc(sizeof(int) * G->vexNum);
	for (int i = 0; i < G->vexNum; i++) visited[i] = 0;
	int arcs[9][9] = {
		0,   6,   4,   5,   MAX, MAX, MAX, MAX, MAX, MAX, 0,   MAX, MAX, 1,
		MAX, MAX, MAX, MAX, MAX, MAX, 0,   MAX, 1,   MAX, MAX, MAX, MAX, MAX,
		MAX, MAX, 0,   MAX, 2,   MAX, MAX, MAX, MAX, MAX, MAX, MAX, 0,   MAX,
		9,   7,   MAX, MAX, MAX, MAX, MAX, MAX, 0,   MAX, 4,   MAX, MAX, MAX,
		MAX, MAX, MAX, MAX, 0,   MAX, 2,   MAX, MAX, MAX, MAX, MAX, MAX, MAX,
		0,   4,   MAX, MAX, MAX, MAX, MAX, MAX, MAX, MAX, 0 };
	createGraph(G, (char*)"012345678", (int*)arcs);
	DFS(G, visited, 0);
	printf("\n");
	criticalPath(G);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1YC..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值