45题 Maximum Subarray Difference最大子数组差

本文介绍了一种解决最大子数组差问题的算法,通过Java实现,针对给定的整数数组,寻找两个非重叠子数组,使得它们和的绝对差值最大。算法利用了四个数组来分别记录每个位置的最大和最小前缀和,最后遍历计算可能的子数组差值并返回最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Maximum Subarray Difference 最大子数组差

Description
Given an array with integers.

Find two non-overlapping subarrays A and B, which |SUM(A) - SUM(B)|∣SUM(A)−SUM(B)∣ is the largest.

Return the largest difference.

public class Solution {
    /**
     * @param nums: A list of integers
     * @return: An integer indicate the value of maximum difference between two substrings
     */
    public int maxDiffSubArrays(int[] nums) {
        // write your code here
        if(nums == null || nums.length == 0){
          return 0 ;
        }
        int size = nums.length ;
        int[] left_max = new int[size] ;
        int[] left_min = new int[size] ;
        int[] right_max = new int[size] ;
        int[] right_min = new int[size] ;
        int[] copy = new int[size] ;
        for(int i = 0 ; i < size ; i++){
          copy[i] = -1 * nums[i] ;
        }
        int max = Integer.MIN_VALUE, sum = 0 , minSum = 0 ;
        for(int i = 0 ; i < nums.length ; i++){
               sum = sum + nums[i] ;
               max = Math.max(max , sum - minSum) ;
               minSum = Math.min(sum , minSum) ;
               left_max[i] = max ;
        }
         max = Integer.MIN_VALUE ; 
         sum = 0 ; 
         minSum = 0 ;
        for(int i = size-1 ; i >= 0 ; i--){
               sum = sum + nums[i] ;
               max = Math.max(max , sum - minSum) ;
               minSum = Math.min(sum , minSum) ;
               right_max[i] = max ;
        }
        max = Integer.MIN_VALUE ; 
         sum = 0 ; 
         minSum = 0 ;
        for(int i = 0 ; i < size ; i++){
           sum += copy[i] ;
           max = Math.max(max , sum-minSum ) ;
           minSum = Math.min(minSum , sum) ;
           left_min[i] = -1 * max ;
        }
        max = Integer.MIN_VALUE ; 
         sum = 0 ; 
         minSum = 0 ;
        for(int i = size-1 ; i >= 0 ; i--){
           sum += copy[i] ;
           max = Math.max(max , sum-minSum ) ;
           minSum = Math.min(minSum , sum) ;
           right_min[i] = -1 * max ;
        }
        int diff =0 ;
        for(int i= 0 ; i< size -1 ; i++){
          diff = Math.max(diff, Math.abs(left_max[i] - right_min[i+1]));
          diff = Math.max(diff, Math.abs(left_min[i] - right_max[i+1]));
        }
        return diff ;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值