lbp

本文探讨了概率图模型中的两种主要近似推断方法:基于belief propagation的循环信念传播(loopy belief propagation)及变分推断中的mean field算法与expectation propagation算法。此外还讨论了MCMC作为一种精确求解方法的优势与局限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在概率图模型中,实现一个算法模型的方法有很多种,但是常用的或者说可行的有两种:MCMC和近似推断。

 

近似推断的方法中,基本上是基于两种思路的,一是belief propagation,一是变分推断,其中变分推断中,有mean field算法和expectation propagation两种算法。

 

loopy belief propagation中,定义了factor graph,在此基础上实现近似推断。

 

mean field算法和 expectation propagation均是对相对熵求minimal后,得到相迎的解。而相对来说mean field算法得到的是local minimal 而ep得到的未必是minimal,感觉更多的是像名字的含义,expectation的近似。

 

MCMC是一种精确的求解,但是问题是收敛的判断比较麻烦,理论上是肯定收敛的,只是何时收敛,怎么才是收敛到真实解了,这些也是个问题。因此,MCMC的计算量要大,所以,如果处理的数据量很大的话,是无法实现MCMC采样的,计算机根本跑不动的。

 

下一阶段的任务是了解loopy belief propagation算法。

### Local Binary Patterns (LBP) in Computer Vision and Image Processing #### Definition of LBP Local Binary Pattern (LBP) is a type of feature used for texture classification in computer vision. The operator labels the pixels of an image by thresholding the neighborhood of each pixel and considers the result as a binary number[^3]. #### Algorithm Steps The extraction algorithm contains two main steps: the threshold step and the encoding step. In the **threshold step**, all neighboring pixel values are compared to the center pixel value within each pattern, converting these into binary values (0 or 1). This process captures local binary differences around the central point. During the **encoding step**, the resulting binary numbers from the threshold phase get encoded and transformed into decimal numbers that characterize structural patterns. These decimal representations effectively summarize the spatial structure surrounding the central pixel. #### Historical Development Initially proposed by Ojala et al., this method was designed for rotation-invariant texture classification. Early versions computed histograms based on absolute gray-level differences between the center pixel's intensity level and its neighbors'. Subsequently, improvements led to using only the sign rather than magnitude when comparing intensities, which simplified computations while preserving useful information about textures' microstructures such as edges, lines, and spots. ```python import cv2 import numpy as np def lbp(image, P=8, R=1): """Compute LBP features.""" lbp_image = np.zeros_like(image) for i in range(1, image.shape[0]-1): for j in range(1, image.shape[1]-1): # Get neighbor pixels at radius R neighbors = [] for k in range(P): angle = float(k)*2.0*np.pi/P nx = int(i + round(R * np.cos(angle))) ny = int(j + round(R * np.sin(angle))) if nx >= 0 and nx < image.shape[0] and ny >= 0 and ny < image.shape[1]: neighbors.append(image[nx][ny]) else: neighbors.append(0) # Compare with center pixel center_pixel_value = image[i,j] codes = [(n > center_pixel_value) for n in neighbors] # Convert list of booleans to integer code lb_code = sum([v << p for p,v in enumerate(codes)]) lbp_image[i,j]=lb_code return lbp_image ``` This Python function demonstrates how one might implement basic LBP computation over an input grayscale `image`. It iterates through every pixel except border regions where full neighborhoods cannot be defined reliably due to boundary conditions.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值