这10个Python机器学习库,你用过哪些?


 
点击上方“菜学Python”,选择“星标”公众号

超级无敌干货,第一时间送达!!!

892ec4421f5ff267cfa4cb0d0bfc8712.jpeg

来源:量子位

1. Awkward Array

根据官方介绍,Awkward Array用于嵌套的、大小不一的数据,包括任意长度的列表、记录、混合的类型和缺失数据,使用起来类似NumPy

看起来像是升级版的NumPy呀。

2b5b1d776d0dc14c7fed282425e6a7b8.png

果然,不同长度的数组可以直接放在一起运算。

dfd39444afeacee31e1fa4d80b7e2760.png

并且,官方表示Awkward Array不仅使用起来更简便,在速度内存上也有量级的优势。

看看是不是可以安排上了~

https://pypi.org/project/awkward/

2. Jupytext

相信大家对Jupyter Notebook都不陌生。

当你有了Jupytext这个小插件就可以将Jupyter Notebook和IDE完美结合,听起来是不是很棒!

从此Jupyter Notebook可以被存储为Markdown文件或多种语言的脚本文件。

Jupytext可以做的事主要有:

  • Jupyter Notebook的版本控制

  • 在你喜欢的文本编辑器中编辑、合并或重构Notebook

  • 在Notebook上使用Q&A检查

在Python中使用的样子:

827e6d3c99e66f1c40bf32fd533aa805.png

此项目在Github上已有5k+star。

https://github.com/mwouts/jupytext

3. Gradio

比Streamlit还轻量UI设计库Gradio让你轻松在浏览器中“玩转”你的模型,可以直接在浏览器中拖放图片,粘贴文字,录制声音,等等。

89fdeaf98dc5c8349bdad08ba751e569.png

cd22f389481efaca95441ebf736ad64e.gif

只要将launch()函数中的参数设置为share=True,还能得到一个可分享网址,拿到链接的朋友在电脑和手机端都能打开,活脱脱就是一个小程序

时常需要做Demo的小伙伴快看起来吧,此项目在Github上已有4.5k+star。

https://github.com/gradio-app/gradio

4. Hub

这个Hub在数据管理和数据预处理上可是一把好手。

e6196b5f1104e27b612867f0ed4713d1.png

它可以处理任何类型任何大小的数据,并且因为数据储存在云端上,所以可以无缝在任何机器上访问。

被压缩为二进制字节的数据可以被存储在任何地方,并且只有在需要的时候才会被获取,所以没有TB级硬盘也可以处理TB级数据

Hub贴心地提供了重要API,支持数据在常用工具(PyTorch等)上的使用,数据版本控制,数据转换等功能。

此项目在github上已有4.1k+star。

https://github.com/activeloopai/Hub

5. AugLy

AugLy是facebook最新推出的数据增强库,同时支持语音文本图像视频类型的数据,包含了100多种增强方式。

7bce50e8ed3feb06ed0beed5086f5007.png

数据对于模型训练至关重要,而标注大规模数据十分困难。由于人力资源,和模型特性的限制,数据增强的应用越来越广泛。

AugLy的优点

  • 处理类型更为全面。其他的数据增强库,例如Albumentations和NVIDIA DALI,主要负责图像相关数据的处理,文字数据不支持。

  • 处理方式十分人性化。AugLy可以将一张图片做成备忘录,在图片/视频上叠加文字/Emojis,转发社交媒体上的截图,还可以帮助你处理诸如拷贝检测、仇恨言论检测或版权侵权等问题。

此项目在Github上已有4.1k+star。

https://github.com/facebookresearch/AugLy

6. Evidently

Evidently是用来监测模型效果的工具,可从Pandas DataFrame或csv文件中生成交互式可视化报告JSON格式效果简介。在Jupyter Notebook中可以使用。

2595c08ddbca81da454a16d28504bde3.png

目前可以提供6种报告:数据漂移、数值目标漂移、分类目标漂移、回归模型性能、分类模型性能和概率分类模型性能。

此项目在Github上已有1.8k+star。

https://github.com/evidentlyai/evidently

7. YOLOX

如果你熟悉YOLO的话,那你或许会对旷视今年推出的YOLOX感兴趣。

YOLO就是那个目标检测算法,可以被使用在汽车自动驾驶等前沿技术中。

YOLOX是YOLO的无锚版本,设计更简单,但性能更好!它的目标是在研究界和工业界之间架起一座桥梁,同时弥合两方之间的差距。

edfed9472c3f2e7065df12aadc64c30f.png
9b6394f3e6ecae51053c94cf279238aa.png

这个Github上的开源项目在短短半年内已获得5.2k+star。

https://github.com/Megvii-BaseDetection/YOLOX

8. LightSeq

正如它的名字一样,LightSeq是一款由字节跳动开发的支持BERT、GPT、Transformer等众多模型的超快推理引擎。

3f4f1ef541b195bfe4deff3c505478e8.png

可以看到它的表现,比FasterTransformer还要Fast

e79ec4e2be6871e72569cf223c60befd.png

LightSeq支持的模型也是非常全面

aea88ad7064a38cd6bd0660ca59f9a9c.png

总之就是两个字“好用”。此项目在Github上已有1.9k+star。

https://github.com/bytedance/lightseq

9. Greykite

想预测COVID-19的恢复速度吗?那就来看看LinkedIn为了自家时间序列预测需求开发的Greykite吧。

a896d4b3ce246db112a355bb14271d77.png

功能全面(多种时间趋势),界面直观,预测速度快和可扩展性强是它最大的亮点。

2c72f7a58f1d6a5f5aafb080615be10c.png

被应用在上面的三大算法:

  • Silverkite (Greykite’s flagship algorithm)

  • Facebook Prophet

  • Auto Arima

感兴趣的话就去研究看看吧,此项目在Github上已有1.4k+star。

https://github.com/linkedin/greykite

10. Jina and Finetuner

如今,在搜索引擎等应用上,语义识别的地位越来越高,因为它可以有效避免字词匹配的局限。

不过语义识别涉及的神经网络可能会让很多人感到头大,JinaFinetuner可以帮你解决这些问题。

7b269559c8e123e43810c0bb430db55b.png

Jina是一个神经搜索框架,使任何人都能在几分钟内建立可扩展的深度学习搜索应用程序。

Finetuner配合Jina帮助你对神经网络进行调参,以获得神经搜索任务的最佳结果。

Jina和Finetuner适合没什么经验,又想尝试的朋友。

https://github.com/jina-ai/finetuner

参考链接:

https://tryolabs.com/blog/2021/12/21/top-python-libraries-2021


 

 

推荐阅读:

入门: 最全的零基础学Python的问题  | 零基础学了8个月的Python  | 实战项目 |学Python就是这条捷径

干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 |   从万众期待到口碑扑街!唐探3令人失望  | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影

趣味:弹球游戏  | 九宫格  | 漂亮的花 | 两百行Python《天天酷跑》游戏!

AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影

小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!|  再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!

年度爆款文案
1).卧槽!Pdf转Word用Python轻松搞定!
2).学Python真香!我用100行代码做了个网站,帮人PS旅行图片,赚个鸡腿吃
3).首播过亿,火爆全网,我分析了《乘风破浪的姐姐》,发现了这些秘密 
4).80行代码!用Python做一个哆来A梦分身 
5).你必须掌握的20个python代码,短小精悍,用处无穷 
6).30个Python奇淫技巧集 
7).我总结的80页《菜鸟学Python精选干货.pdf》,都是干货 
8).再见Python!我要学Go了!2500字深度分析!
9).发现一个舔狗福利!这个Python爬虫神器太爽了,自动下载妹子图片

点阅读原文,看B站50个Python实战视频!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值