(KMP 1.5)hdu 1358 Period(使用next数组来求最小循环节——求到第i个字符的循环节数)

本文介绍了一个算法问题,即如何判断给定字符串的每个前缀是否为周期性字符串,并提供了使用KMP算法解决该问题的详细步骤及源代码实现。

题目:

Period

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3813    Accepted Submission(s): 1862


Problem Description
For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as A K , that is A concatenated K times, for some string A. Of course, we also want to know the period K.
 

Input
The input file consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S. The second line contains the string S. The input file ends with a line, having the number zero on it.
 

Output
For each test case, output “Test case #” and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case.
 

Sample Input
  
3 aaa 12 aabaabaabaab 0
 

Sample Output
  
Test case #1 2 2 3 3 Test case #2 2 2 6 2 9 3 12 4
 

Recommend
JGShining   |   We have carefully selected several similar problems for you:   3336  3068  2203  1277  1867 


题目分析:

         KMP。简单题。这一道题其实和KMP 1.4那道题的思想是一样的。



代码如下:

/*
 * hdu1358.cpp
 *
 *  Created on: 2015年4月18日
 *      Author: Administrator
 */




#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>

using namespace std;

const int maxn = 1000001;

int m;//目标串的长度

char pattern[maxn];//模式串
int nnext[maxn];//next数组.直接起next可能会跟系统中预定的重名.

/*O(m)的时间求next数组*/
void get_next() {
	m = strlen(pattern);

	nnext[0] = nnext[1] = 0;
	for (int i = 1; i < m; i++) {
		int j = nnext[i];
		while (j && pattern[i] != pattern[j])
			j = nnext[j];
		nnext[i + 1] = pattern[i] == pattern[j] ? j + 1 : 0;
	}
}


int main(){
	int cnt = 1;

	while(scanf("%d",&m)!=EOF,m){
		scanf("%s",pattern);
		get_next();

		printf("Test case #%d\n",cnt++);
		/**
		 * 遍历next数组。
		 * 输出循环节数>=2的情况
		 */
		int i;
		for(i = 0 ; i <= m ; ++i){
			if(nnext[i] == 0){
				continue;
			}

			int len = i - nnext[i];
			if(i%len == 0){
				printf("%d %d\n",i,i/len);
			}
		}
		printf("\n");
	}
}






### KMP算法中的Next数组及其与最小循环节的关系 #### 什么是KMP算法的Next数组KMP(Knuth-Morris-Pratt)算法是一种高效的字符串匹配算法,其核心在于通过预处理模式串来构建`next`数组。该数组记录了模式串前缀和后缀的最大公共部分长度[^1]。 具体来说,对于一个字符串`s[1...i]`,如果它可以被分解为多个重复的部分,则这些重复部分被称为**循环节**。而`next[i]`表示的是当前字符位置之前最长相等前后缀的结束索引[^2]。 #### 如何利用Next数组寻找最小循环节? 基于上述定义,可以通过以下方式推导出最小循环节: 假设字符串`s[1...i]`可以由`k`个相同的子串组成,那么有关系式成立: \[ i = k \cdot L \] 其中 \(L\) 是单个循环节的长度;同时, \[ next[i] = (k - 1) \cdot L \] 联立这两个方程可得到循环节长度\(L\)的具体表达形式: \[ L = i - next[i] \] 进一步验证条件:只有当满足下面这个整除性质的时候才真正存在这样的循环结构: \[ i \% (i - next[i]) == 0 \] 此时对应的循环次\(K\)则可通过简单的算术运算得出: \[ K = i / L = i / (i - next[i]) \] 因此,在实际应用过程中,我们只需要遍历整个字符串并依据上面提到的方法逐一判断各个可能成为候选解的位置即可找到符合条件的结果集。 ```python def compute_next_array(s): n = len(s) ne = [0]*n j = 0 for i in range(1, n): while j and s[i]!=s[j]: j=ne[j-1] if s[i]==s[j]: j+=1 ne[i]=j return ne def find_min_cycle_length(s): ne = compute_next_array(s) length=len(s) cycle_len=length-ne[-1] # Check whether the string is periodic with period 'cycle_len' if length % cycle_len==0: return cycle_len else: return None example_string="aabaabaabaab" print(find_min_cycle_length(example_string)) # Output should be 4 as explained earlier. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅气的东哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值