(KMP 1.4)hdu 3746 Cyclic Nacklace(使用next数组来求循环节的长度——求一个字符串需要添加多少个字符才能使该字符串的循环节的个数>=2)

本文介绍如何使用KMP算法解决寻找字符串最小循环节的问题,通过实例详细解析了算法的具体实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

Cyclic Nacklace

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3387    Accepted Submission(s): 1549


Problem Description
CC always becomes very depressed at the end of this month, he has checked his credit card yesterday, without any surprise, there are only 99.9 yuan left. he is too distressed and thinking about how to tide over the last days. Being inspired by the entrepreneurial spirit of "HDU CakeMan", he wants to sell some little things to make money. Of course, this is not an easy task.

As Christmas is around the corner, Boys are busy in choosing christmas presents to send to their girlfriends. It is believed that chain bracelet is a good choice. However, Things are not always so simple, as is known to everyone, girl's fond of the colorful decoration to make bracelet appears vivid and lively, meanwhile they want to display their mature side as college students. after CC understands the girls demands, he intends to sell the chain bracelet called CharmBracelet. The CharmBracelet is made up with colorful pearls to show girls' lively, and the most important thing is that it must be connected by a cyclic chain which means the color of pearls are cyclic connected from the left to right. And the cyclic count must be more than one. If you connect the leftmost pearl and the rightmost pearl of such chain, you can make a CharmBracelet. Just like the pictrue below, this CharmBracelet's cycle is 9 and its cyclic count is 2:

Now CC has brought in some ordinary bracelet chains, he wants to buy minimum number of pearls to make CharmBracelets so that he can save more money. but when remaking the bracelet, he can only add color pearls to the left end and right end of the chain, that is to say, adding to the middle is forbidden.
CC is satisfied with his ideas and ask you for help.
 

Input
The first line of the input is a single integer T ( 0 < T <= 100 ) which means the number of test cases.
Each test case contains only one line describe the original ordinary chain to be remade. Each character in the string stands for one pearl and there are 26 kinds of pearls being described by 'a' ~'z' characters. The length of the string Len: ( 3 <= Len <= 100000 ).
 

Output
For each case, you are required to output the minimum count of pearls added to make a CharmBracelet.
 

Sample Input
  
3 aaa abca abcde
 

Sample Output
  
0 2 5
 

Author
possessor WC
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   3336  1358  2222  3068  2896 


题目大意:

              对于一个给定的字符串,需要添加多少个字符才能使该字符串的循环节的个数>=2。


题目分析:

              KMP。简单题。


这道题需要记住以下几点:

1、len-next[len]   :  该字符串的最小循环节的长度

2、如果len%(len-next[len]) == 0 ,表明该字符串由循环节组成,那么循环节的个数是len/(len-next[len])。



代码如下:

/*
 * hdu3746.cpp
 *
 *  Created on: 2015年4月18日
 *      Author: Administrator
 */



#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>

using namespace std;

const int maxn = 100001;

int m;//目标串的长度

char pattern[maxn];//模式串
int nnext[maxn];//next数组.直接起next可能会跟系统中预定的重名.

/*O(m)的时间求next数组*/
void get_next() {
	m = strlen(pattern);

	nnext[0] = nnext[1] = 0;
	for (int i = 1; i < m; i++) {
		int j = nnext[i];
		while (j && pattern[i] != pattern[j])
			j = nnext[j];
		nnext[i + 1] = pattern[i] == pattern[j] ? j + 1 : 0;
	}
}


int main(){
	int t;
	scanf("%d",&t);
	while(t--){
		scanf("%s",pattern);

		get_next();

		int len = strlen(pattern);//计算模式串的长度

		/**
		 * 如果该字符串已经是由多个循环节组成.
		 * len%(len-nnext[len]) == 0 : 该字符串由循环节组成
		 * (len != len-nnext[len]) :字符串的长度不等于循环节的长度
		 *
		 * ----->该字符串本身已经由多个循环节组成
		 */
		if(len%(len-nnext[len]) == 0 && (len != len-nnext[len]) ){
			printf("0\n");//那这时候需要添加的字符的数量是0
		}else{
			/**
			 * len-nnext[len] : 循环节的长度
			 * len%(len-nnext[len] : 字符串中不是循环节的部分的长度
			 */
			int ans = (len-nnext[len]) - (len%(len-nnext[len]));//计算还需要添加的字符的数量
			printf("%d\n",ans);
		}
	}

	return 0;
}






### KMP算法中的Next数组及其与最小循环节的关系 #### 什么是KMP算法的Next数组KMP(Knuth-Morris-Pratt)算法是一种高效的字符串匹配算法,其核心在于通过预处理模式串来构建`next`数组。该数组记录了模式串前缀和后缀的最大公共部分长度[^1]。 具体来说,对于一个字符串`s[1...i]`,如果它可以被分解为多个重复的部分,则这些重复部分被称为**循环节**。而`next[i]`表示的是当前字符位置之前最长相等前后缀的结束索引[^2]。 #### 如何利用Next数组寻找最小循环节? 基于上述定义,可以通过以下方式推导出最小循环节: 假设字符串`s[1...i]`可以由`k`个相同的子串组成,那么有关系式成立: \[ i = k \cdot L \] 其中 \(L\) 是单个循环节长度;同时, \[ next[i] = (k - 1) \cdot L \] 联立这两个方程可得到循环节长度\(L\)的具体表达形式: \[ L = i - next[i] \] 进一步验证条件:只有当满足下面这个整除性质的时候才真正存在这样的环结构: \[ i \% (i - next[i]) == 0 \] 此时对应的环次数\(K\)则可通过简单的算术运算得出: \[ K = i / L = i / (i - next[i]) \] 因此,在实际应用过程中,我们只要遍历整个字符串并依据上面提到的方法逐一判断各个可能成为候选解的位置即可找到符合条件的结果集。 ```python def compute_next_array(s): n = len(s) ne = [0]*n j = 0 for i in range(1, n): while j and s[i]!=s[j]: j=ne[j-1] if s[i]==s[j]: j+=1 ne[i]=j return ne def find_min_cycle_length(s): ne = compute_next_array(s) length=len(s) cycle_len=length-ne[-1] # Check whether the string is periodic with period 'cycle_len' if length % cycle_len==0: return cycle_len else: return None example_string="aabaabaabaab" print(find_min_cycle_length(example_string)) # Output should be 4 as explained earlier. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅气的东哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值