题意:知道矩阵的前i行之和,和前j列之和(任意i和j都可以)。求这个矩阵。每个格子中的元素必须在1~20之间。矩阵大小上限20*20
首先我们可以随意写出一个答案满足行的限制,然后就需要在每行和不变的情况下,通过调度,满足列的限制,而这个调度的过程,同网络流的流的思想正式契合的,这是网络流思想的很好体现。
建图就是源点连向每个行表示这行的和,然后每列连向汇点,表示这列的和,然后i行向j列连边,表示格子(i,j)将一部分和从行i流向了列j
还有一个小问题就是每个格子的范围是1-20,这样就是一个容量有上下界的问题了,但是实际上可以每个格子都同时加一,就可以完美的避免了将问题复杂化
#include <iostream>
#include <queue>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define rep(i, j, k) for(int i = j; i <= k; i++)
#define maxn 509
using namespace std;
int n, m, s, t, head[maxn], to[2 * maxn], Next[2 * maxn], flow[2 * maxn], vis[maxn], d[maxn];
int ans[21][21], cur[maxn], tot;
void add (int u, int v, int w)
{
//if (w) printf ("add %d %d == %d\n", u, v, w);
to[++tot] = v;
Next[tot] = head[u];
head[u] = tot;
flow[tot] = w;
}
bool bfs ()
{
memset (vis, 0, sizeof (vis));
queue <int> q;
q.push (s);
vis[s] = 1;
d[s] = 0;
while (!q.empty ())
{
int now = q.front ();
q.pop ();
for (int i = head[now]; i; i = Next[i])
if (!vis[to[i]] && flow[i] > 0)
{
vis[to[i]] = 1;
q.push (to[i]);
d[to[i]] = d[now] + 1;
}
}
return vis[t];
}
int dfs (int x, int a)
{
int ret = 0, f;
if (x == t || !a)
return a;
for (int &i = cur[x]; i; i = Next[i])
if (d[to[i]] == d[x] + 1 && (f = dfs (to[i], min (a, flow[i]))) > 0)
{
flow[i] -= f;
flow[i ^ 1] += f;
ret += f;
a -= f;
if (!a)
break;
}
return ret;
}
void work ()
{
while (bfs ())
{
rep (i, s, t)
cur[i] = head[i];
dfs (s, 0x7fffffff);
}
}
void print (int x)
{
printf ("Matrix %d\n", x);
rep (i, 2, n + 1)
for (int j = head[i]; j; j = Next[j])
if (to[j] != s)
ans[i - 1][to[j] - 1 - n] = 20 - flow[j];// printf ("flow ----- %d -> %d == %d\n", i, to[j], 19 - flow[j]);
for (int i = 1; i <= n; i++, cout << endl)
for (int j = 1; j <= m; j ++, printf (" "))
printf ("%d", ans[i][j]);
}
int main ()
{
int ti;
cin >> ti;
rep (ff, 1, ti)
{
memset (head, 0, sizeof (head));
memset (Next, 0, sizeof (Next));
tot = 1;
cin >> n >> m;
s = 1, t = 1 + n + m + 1;
int u, pre = 0;
rep (i, 1, n)
scanf ("%d", &u),u -= pre, pre += u, add (s, i + 1, u - m), add (i + 1, s, 0);
pre = 0;
rep (i, 1, m)
scanf ("%d", &u),u -= pre, pre += u, add (1 + n + i, t, u - n), add (t, 1 + n + i, 0);
rep (i, 1, n)
rep (j, 1, m)
add (i + 1, j + 1 + n, 19), add (j + 1 + n, i + 1, 0);
work ();
print (ff);
}
return 0;
}