- 非阻塞I/O
调用I/O可能会使进程永远阻塞。
1)文件不存在 读操作阻塞
2) 数据不能被相同文件类型立即接受 (如无空间、网络流控制等) 写操作阻塞
3)打开某些文件类型阻塞
4)对已经加上强制性记录锁的文件进行读写
5)某些ioctl操作
6)某些进程间通信函数
非阻塞I/O使我们可以发出open、read和write这样的I/O操作,并使这些操作不会永远阻塞。如果这种操作不能完成,则调用立即出错返回,表示该操作如继续执行将阻塞。
有两种为其制定非阻塞的I/O的方法
1)如果调用open获得描述符,则可制定O_NONBLOCK标志
2)对于已经打开的一个描述符,则可调用fcntl,由该函数打开O_NONBLOCK文件状态标志 - 记录锁(record locking)
功能:当第一个进程正在读或修改文件的某个部分时,使用记录锁可以组织其它进程修改同一文件区。 - 异步I/O
异步IO的概念和同步IO相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。异步IO将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。
异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。
异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。

被折叠的 条评论
为什么被折叠?



