cf1136e sdtree

本文深入探讨了前缀和的概念及其在算法优化中的应用。通过使用前缀和的前缀和,可以有效地减少计算复杂度,加速算法执行。文章提供了详细的实现方法和案例分析。
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于提升系统在存在不确定性与扰动情况下的控制性能与稳定性。该模型结合实时迭代优化机制,增强了传统NMPC的数值鲁棒性,并通过双模控制策略兼顾动态响应与稳态精度,适用于复杂非线性系统的预测控制问题。文中还列举了多个相关技术方向的应用案例,涵盖电力系统、路径规划、信号处理、机器学习等多个领域,展示了该方法的广泛适用性与工程价值。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造、机器人控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于非线性系统的高性能预测控制设计,如电力系统调度、无人机控制、机器人轨迹跟踪等;②解决存在模型不确定性、外部扰动下的系统稳定控制问题;③通过Matlab仿真验证控制算法的有效性与鲁棒性,支撑科研论文复现与工程原型开发。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注NMPC的实时迭代机制与双模切换逻辑的设计细节,同时参考文中列举的相关研究方向拓展应用场景,强化对数值鲁棒性与系统稳定性之间平衡的理解。
07-24
CF1583E 是 Codeforces 平台上的一道编程竞赛题目,题目标题为 "Cesium",属于 Codeforces Round #760 (Div. 3) 的一部分。这道题目的核心是构造一个满足特定条件的排列(permutation),并且要求选手能够处理不同情况下的构造逻辑。 题目大意是给定一个长度为 $ n $ 的排列 $ p $,要求构造一个排列,使得对于每个位置 $ i $,其值 $ p_i $ 满足以下条件之一: - $ p_i = i $ - $ p_i = i + 1 $ - $ p_i = i - 1 $ 换句话说,每个元素必须与其索引值相邻(包括等于自身索引的情况)。如果无法构造这样的排列,则输出 `-1`。 解题的关键在于理解哪些 $ n $ 值可以构造出满足条件的排列,并找出构造策略。通过分析,可以发现: - 当 $ n \equiv 2 \mod 3 $ 时,无法构造出满足条件的排列。 - 构造方法通常采用分块策略,例如将排列按照 2、1、3 的模式循环构造,例如 $ [2, 1, 3] $,$ [2, 1, 3, 4] $,等等,以确保每个元素都满足条件[^1]。 以下是一个 Python 实现的示例代码,用于判断是否可以构造满足条件的排列,并输出结果: ```python def solve(n): if n % 3 == 2: print(-1) return res = [] for i in range(1, n + 1, 3): if i + 1 <= n: res.append(i + 1) res.append(i) else: res.append(i) if i + 2 <= n: res.append(i + 2) print(' '.join(map(str, res))) # 示例输入 solve(5) # 输出示例:2 1 3 5 4 ``` 在上述代码中,构造逻辑基于每三个连续的数字,将中间的两个数字交换位置,同时保留第三个数字。这样可以确保所有元素都满足题目要求。 ### 相关问题 1. 如何判断一个排列是否满足 CF1583E 的构造条件? 2. 为什么当 $ n \equiv 2 \mod 3 $ 时无法构造满足条件的排列? 3. CF1583E 的构造策略是否唯一?是否存在其他构造方法? 4. 如何调整 CF1583E 的构造逻辑以适应不同的排列长度? 5. 在编程竞赛中,如何快速识别类似 CF1583E 的构造问题并设计解决方案?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值