codeforces 832D Misha, Grisha and Underground 最近公共祖先LCA

本文介绍了一种解决树形结构中任意三点选取问题的算法,目标是找到两条路径相交部分的最大长度。通过使用LCA算法计算树上任意两点间的最短路径,进而得出三条边两两相交的最长公共路径。该算法适用于竞赛编程中的图论问题。

Input
The first line contains two integers n and q (2 ≤ n ≤ 105, 1 ≤ q ≤ 105) — the number of stations and the number of days.

The second line contains n - 1 integers p2, p3, ..., pn (1 ≤ pi ≤ n). The integer pi means that there is a route between stations pi and i. It is guaranteed that it's possible to reach every station from any other.

The next q lines contains three integers a, b and c each (1 ≤ a, b, c ≤ n) — the ids of stations chosen by boys for some day. Note that some of these ids could be same.

Output
Print q lines. In the i-th of these lines print the maximum possible number Grisha can get counting when the stations s, t and f are chosen optimally from the three stations on the i-th day.

Examples
input
3 2
1 1
1 2 3
2 3 3
output
2
3
input
4 1
1 2 3
1 2 3
output
2

分析:给3个点任选一个作为终点其他两个为起始点,求两条路径相交的最大值。

求树上的路径可以用LCA。求两条路径的相交长度 为:(d(a,b) + d(c,b) - d(a,c)) /2  其中b为终点---这两条的路径必有相交点所以有此公式。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<cmath>
#include<queue>
using namespace std;

int n,q;
vector<int> e[100005];
int fa[100005][22];
int dep[100005];

void dfs(int u,int f,int d)
{
    fa[u][0]=f;
    dep[u]=d;
    int len=e[u].size();
    for(int i=0;i<len;i++)
    {
        int v=e[u][i];
        if(v!=f)
        {
            dfs(v,u,d+1);
        }
    }
}

void init()
{
    for(int i=1;i<=20;i++)
    {
        for(int j=1;j<=n;j++)
        {
            fa[j][i]=fa[fa[j][i-1]][i-1];
        }
    }
}

int LCA(int a, int b)
{
    if(dep[a]<dep[b])
        swap(a,b);

    int c=dep[a]-dep[b];
    for(int i=20;i>=0;i--)
    {
        if((c&(1<<i))!=0)
        {
            a=fa[a][i];
        }
    }
    if(a==b)
        return b;

    for(int i=20;i>=0;i--)
    {
        if(fa[a][i]!=fa[b][i])
            a=fa[a][i],b=fa[b][i];
    }
    return fa[a][0];

}
int dis(int a,int b)
{
    int lca=LCA(a,b);
    return dep[a]+dep[b]-2*dep[lca];
}
int solve(int a,int b,int c)
{
    return (a+b-c)/2+1;
}

int main()
{
    while(~scanf("%d%d",&n,&q))
    {
        for(int i=0;i<=100000;i++)
        {
            e[i].clear();
            for(int j=0;j<=20;j++)
                fa[i][j]=0;
        }
        for(int i=2;i<=n;i++)
        {
            int tp;
            scanf("%d",&tp);
            e[tp].push_back(i);
            e[i].push_back(tp);
        }
        dfs(1,0,0);
        init();

        //cout<<LCA(2,4)<<endl;
        while(q--)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            int d1=dis(a,b);
            int d2=dis(b,c);
            int d3=dis(a,c);

            int ans1=solve(d1,d2,d3);
            int ans2=solve(d2,d3,d1);
            int ans3=solve(d1,d3,d2);

            int ans=max(max(ans1,ans2),ans3);
            printf("%d\n",ans);
        }
    }
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值