Codeforces 706E Working routine十字链表

本文介绍了一种高效的矩阵操作方法,通过构建十字链表记录每个元素的上下左右关系,在不重叠子矩阵交换操作中仅需调整边界元素指向,实现O(NQ)时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

给定一个N∗MNM的矩阵和QQ个操作。每个操作将矩阵中的两个子矩阵交换,保证这两个子矩阵没有重叠部分。 
输出QQ次操作后的矩阵。

Data Constraint 
N,M≤1000,Q≤10000NM1000Q10000

题解

矩阵的每个位置维护一个向右和向下的类似链表指针的东西,然后交换两个子矩阵的时候实际上就是交换边界上的指针。

时间复杂度:O(NQ)

 

// 十字链表 Codeforces Round #367 E Working routine
// 题意:给你一个矩阵,q次询问,每次交换两个子矩阵,问最后的矩阵
// 思路:暴力肯定不行。我们可以每个元素建立十字链表,记录右边和下边的元素,和每个元素的下标(从0开始),每次询问只需要交换四条边的指向即可。
// 本题要建立(n+1)*(m+1)的矩阵

#include <bits/stdc++.h>
using namespace std;
#define LL long long
const double inf = 123456789012345.0;
const LL MOD =100000000LL;
const int N =1010*1010;
#define clc(a,b) memset(a,b,sizeof(a))
const double eps = 1e-7;
void fre() {freopen("in.txt","r",stdin);}
void freout() {freopen("out.txt","w",stdout);}
inline int read() {int x=0,f=1;char ch=getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch=getchar();}while(ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}return x*f;}

int n,m,q;
struct node{
    int v,r,d;
}a[N];

int chg(int y,int x){
    return y*(m+1)+x;
}

int main(){
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            scanf("%d",&a[chg(i,j)].v);
        }
    }

    for(int i=0;i<=n;i++){
        for(int j=0;j<=m;j++){
            a[chg(i,j)].r=chg(i,j+1);
            a[chg(i,j)].d=chg(i+1,j);
        }
    }
    while(q--){
        int x1,y1,x2,y2,h,w;
        scanf("%d%d%d%d%d%d",&y1,&x1,&y2,&x2,&h,&w);
        int p1=0,p2=0;
        for(int i=1;i<y1;i++) p1=a[p1].d;
        for(int i=1;i<x1;i++) p1=a[p1].r;
        for(int i=1;i<y2;i++) p2=a[p2].d;
        for(int i=1;i<x2;i++) p2=a[p2].r;
        int t1=p1;
        int t2=p2;
        for(int i=1;i<=h;i++){
            t1=a[t1].d;
            t2=a[t2].d;
            swap(a[t1].r,a[t2].r);
        }
        for(int i=1;i<=w;i++){
            t1=a[t1].r;
            t2=a[t2].r;
            swap(a[t1].d,a[t2].d);
        }
        t1=p1,t2=p2;
        for(int i=1;i<=w;i++){
            t1=a[t1].r;
            t2=a[t2].r;
            swap(a[t1].d,a[t2].d);
        }
        for(int i=1;i<=h;i++){
            t1=a[t1].d;
            t2=a[t2].d;
            swap(a[t1].r,a[t2].r);
        }
    }
    int p=0;
    for(int i=1;i<=n;i++){
        p=a[p].d;
        int q=p;
        for(int j=1;j<=m;j++){
            q=a[q].r;
            printf("%d ",a[q].v);
        }
        printf("\n");
    }
    return 0;
}

 

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值