Codeforces Round #284 (Div. 2) D. Name That Tune 概率dp

本文介绍了一种基于概率的动态规划算法,用于解决特定游戏中玩家预期能够正确识别的歌曲数量问题。游戏设定中,玩家需根据播放的歌曲片段猜测歌曲名称,每首歌有固定的识别时间和每秒识别概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Name That Tune
time limit per test
 1 second
memory limit per test
 256 megabytes
input
 standard input
output
 standard output

It turns out that you are a great fan of rock band AC/PE. Peter learned that and started the following game: he plays the first song of the list of n songs of the group, and you have to find out the name of the song. After you tell the song name, Peter immediately plays the following song in order, and so on.

The i-th song of AC/PE has its recognizability pi. This means that if the song has not yet been recognized by you, you listen to it for exactly one more second and with probability of pi percent you recognize it and tell it's name. Otherwise you continue listening it. Note that you can only try to guess it only when it is integer number of seconds after the moment the song starts playing.

In all AC/PE songs the first words of chorus are the same as the title, so when you've heard the first ti seconds of i-th song and its chorus starts, you immediately guess its name for sure.

For example, in the song Highway To Red the chorus sounds pretty late, but the song has high recognizability. In the song Back In Blue, on the other hand, the words from the title sound close to the beginning of the song, but it's hard to name it before hearing those words. You can name both of these songs during a few more first seconds.

Determine the expected number songs of you will recognize if the game lasts for exactly T seconds (i. e. you can make the last guess on the second T, after that the game stops).

If all songs are recognized faster than in T seconds, the game stops after the last song is recognized.

Input

The first line of the input contains numbers n and T (1 ≤ n ≤ 50001 ≤ T ≤ 5000), separated by a space. Next n lines contain pairs of numbers pi and ti (0 ≤ pi ≤ 1001 ≤ ti ≤ T). The songs are given in the same order as in Petya's list.

Output

Output a single number — the expected number of the number of songs you will recognize in T seconds. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Sample test(s)
input
2 2
50 2
10 1
output
1.500000000
input
2 2
0 2
100 2
output
1.000000000
input
3 3
50 3
50 2
25 2
output
1.687500000
input
2 2
0 2
0 2
output
1.000000000
题意,给出n首歌,与总时间,每首歌每秒有p[i]的概率听出,当达到t[i]时,一定可以听出。问能听几首歌的期望。

很好概率dp题,设dp[i][j]表示,第i首歌恰好在第j秒听出的概率。那么明显答案就是所有的dp[i][j]之和,因为,每个dp[i][j]都会使听的歌数多一首。

那么状态转移方程就是从

sum(dp[i-1][j - k] * p[i] ^ (k-1) * (1 - p[i])) p[i]表示第i首听不出概率。这个公式也就是从听出i-1 再过k秒听不出i这首歌。

可以发现,状态有 n * m 个,转移有t[i]个,所以总的复杂度达到n * m * m ,这是不可接受的。


我们比较公式,可以发现,dp[i][j] 与dp[i][j-1]之间是有关系的,dp[i][j]就是从dp[i][j-1] 减去最后一项,再* p[i] 再新加上从dp[i][j-1]转移到dp[i][j]的概率,所以,直接从dp[i][j-1]推出dp[i][j]复杂度降为o(n * m );


#define N 5005
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,m,t[N],a;
double dp[N][N],p[N],ans;
int main()
{
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
     while(S2(n,m)!=EOF)
    {
        FI(n+1){
            FJ(m+1){
                dp[i][j] = 0;
            }
        }
        For(i,1,n+1){
           S2(a,t[i]);
           p[i] = 1.0 - (double)a / 100.0;
        }
        dp[0][0] = 1.0;ans = 0;
        For(i,1,n+1){
            double po = 1.0;
            po = pow(p[i],t[i] - 1);
            For(j,1,m+1){
                double s = dp[i][j-1] ;
                if(j - 1 >= t[i]) s -= dp[i-1][j-1-t[i]] * po;
                s *= p[i];
                if(j >= t[i]) {
                    s += dp[i-1][j-t[i]] * po * p[i];
                }
                s += dp[i-1][j-1] * (1.0 - p[i]);
                dp[i][j] = s;
                ans += dp[i][j];
            }
        }
        printf("%.10f\n",ans);
    }
    //fclose(stdin);
    //fclose(stdout);
    return 0;
}



#define N 5005
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,m,t[N],a,flag;
double dp[2][N],p[N],ans;
int main()
{
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
     while(S2(n,m)!=EOF)
    {
        flag = 0;
        FJ(m+1){
            dp[0][j] = dp[1][j] = 0;
        }
        For(i,1,n+1){
           S2(a,t[i]);
           p[i] = 1.0 - (double)a / 100.0;
        }
        dp[flag][0] = 1.0;ans = 0;
        For(i,1,n+1){
            double po = 1.0;
            po = pow(p[i],t[i] - 1);
            int now = flag ^ 1,last = flag;
            For(j,1,m+1){
                double s = dp[now][j-1];
                if(j - 1 >= t[i]) s -= dp[last][j-1-t[i]] * po;
                s *= p[i];
                if(j >= t[i]) {
                    s += dp[last][j-t[i]] * po * p[i];
                }
                s += dp[last][j-1] * (1.0 - p[i]);
                dp[now][j] = s;
                ans += dp[now][j];
            }
            dp[flag][0] = 0;
            flag ^= 1;
        }
        printf("%.10f\n",ans);
    }
    //fclose(stdin);
    //fclose(stdout);
    return 0;
}



内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值