Towards Comprehensible Recommendation with Large Language Model Fine-tuning

在这里插入图片描述

一、文章主要内容

本文聚焦推荐系统中传统方法存在的“语义-协同鸿沟”问题——传统推荐方法依赖ID表征或物品侧内容特征,难以捕捉与用户偏好对齐的底层语义(如推荐理由),而基于大语言模型(LLM)的特征提取方法又面临“如何让LLM具备推荐对齐推理能力并生成精准个性化推荐理由”的挑战。

为此,作者提出CURec(Content Understanding from a Collaborative Perspective)框架,核心流程包含三部分:

  1. 推荐对齐预训练:通过构建推荐任务相关提示(如分析用户历史交互、推荐候选物品),用强化学习(GRPO算法)微调LLM,使其具备遵循结构化指令、链式推理(CoT)的能力,并能结合世界知识完成推荐任务,初步对齐LLM与推荐目标。
  2. 带推荐信号的奖励模型:借鉴传统推荐架构设计奖励模型,输入用户兴趣模式与物品推荐理由列表,通过多头注意力机制计算用户-物品匹配分数,评估推荐理由的准确性与个性化程度,同时该模型可直接作为推荐模型使用。
  3. 时序链式推理修正:用奖励模型的评分作为信号,通过强化学习交替微调LLM与更新推荐理由——先让LLM生成新理由,经奖励模型评估后优化LLM,再用优化后的LLM更新用户兴趣模式与物品理由列表,确保理由精准且实时适配用户动态偏好。
  4. </
### Ollama Fine-Tuning Guide and Documentation #### Overview of Ollama Fine-Tuning Fine-tuning is a process where pre-trained models are adapted to specific tasks or domains, improving performance on specialized datasets. This approach leverages the knowledge captured by large-scale language models during their initial training phase while allowing customization for particular applications. For Ollama-specific fine-tuning, several key aspects must be considered: - **Data Preparation**: Ensuring that data used for fine-tuning aligns closely with target application scenarios. - **Model Selection**: Choosing an appropriate base model based on task requirements and resource constraints. - **Hyperparameter Tuning**: Adjusting parameters such as learning rate, batch size, etc., to optimize results. - **Evaluation Metrics**: Defining clear criteria to assess improvements post-fine-tuning. #### Practical Steps for Implementing Ollama Fine-Tuning To implement effective fine-tuning strategies using Ollama frameworks, consider following these guidelines: ```python from ollama import load_model, prepare_data, train_model # Load pretrained model model = load_model('pretrained_ollama') # Prepare dataset tailored towards desired use case data = prepare_data(path_to_custom_dataset) # Define hyperparameters suitable for your scenario hyperparams = { 'learning_rate': 0.001, 'batch_size': 32, 'epochs': 5 } # Train the model with custom settings train_model(model=model, data=data, params=hyperparams) ``` This code snippet demonstrates how one might set up a basic pipeline for adapting a generic Ollama-based system into something more domain-specific through targeted adjustments at both input preparation stages alongside parameter selection processes[^1]. #### Best Practices When Performing Ollama Fine-Tuning When engaging in this type of work, adhering to best practices can significantly enhance outcomes: - Utilize high-quality labeled examples relevant to intended deployment contexts. - Experiment systematically across multiple configurations before settling on final choices. - Monitor progress carefully throughout experimentation phases via logging mechanisms built within development environments. - Validate findings rigorously against benchmarks established prior to initiating any modifications. By incorporating these recommendations when working with Ollama's capabilities, developers stand better positioned not only achieve superior technical achievements but also ensure ethical considerations remain paramount during all facets involved from conception through execution cycles[^2]. --related questions-- 1. What preprocessing steps should be taken before feeding text inputs into Ollama models? 2. How does transfer learning differ between general-purpose versus industry-focused NLP solutions like those offered under Ollama umbrella? 3. Can you provide real-world success stories showcasing benefits derived after applying advanced tuning techniques discussed here?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值