LearnAlign: Reasoning Data Selection for Reinforcement Learning in Large Language Models

在这里插入图片描述

论文主要内容与创新点总结

一、主要内容
  1. 研究背景与问题
    强化学习(RL)是提升大语言模型(LLM)推理能力的关键技术,但数据效率低下是主要瓶颈。现有数据选择方法多针对监督微调(SFT),在RL场景下效果有限,且存在计算效率低的问题(如需要对完整数据集进行多轮训练)。

  2. 提出方法:LearnAlign

    • 基于改进的梯度对齐,通过估计数据点对模型训练的影响,智能选择具有高可学习性和代表性的推理数据。
    • 引入基于成功率(success rate)的数据可学习性指标 ( V(\xi) = p(1-p) ),解决梯度范数中响应长度偏差(response-length bias)的问题,避免模型偏向选择短序列数据。
    • 计算流程:通过热身训练(warmup training)估计梯度信息,结合梯度对齐分数与可学习性指标,生成LearnAlign分数矩阵,筛选 top-N 数据。
  3. 实验验证

    • 在三个数学推理基准(GSM8K、MATH、AMC2023)上,LearnAlign使用少量数据(如1000个样本)即可达
《KnowledgeNavigator: Leveraging Large Language Models for Enhanced Reasoning over Knowledge Graph》聚焦于利用大型语言模型增强知识图谱推理。大型语言模型(LLM)在复杂推理和问答(QA)任务中的知识限制方面存在局限性,而KnowledgeNavigator框架利用知识图谱中的外部知识来增强LLM推理[^4]。 该框架主要包括三个阶段:问题分析、知识检索和推理。在问题分析阶段,预测推理跳数,生成相似的问题,以增强推理逻辑挖掘;知识检索阶段,根据给定的问题和大语言模型指导,从知识图谱中迭代检索和过滤相关知识;推理阶段,将检索到的知识转化为对LLM有效的提示,以此增强其推理能力。并且该框架在KGQA基准测试中优于以前的知识图谱增强LLM方法[^4]。 ```python # 以下为简单示意框架各阶段伪代码 # 问题分析 def question_analysis(question): # 预测推理跳数 hop_count = predict_hop_count(question) # 生成相似问题 similar_questions = generate_similar_questions(question) return hop_count, similar_questions # 知识检索 def knowledge_retrieval(question, llm_guide, knowledge_graph): relevant_knowledge = [] # 迭代检索和过滤相关知识 for step in range(max_steps): new_knowledge = retrieve_and_filter(question, llm_guide, knowledge_graph) relevant_knowledge.extend(new_knowledge) return relevant_knowledge # 推理 def reasoning(relevant_knowledge, llm): prompt = convert_to_prompt(relevant_knowledge) result = llm.generate(prompt) return result ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值