KG-HTC: Integrating Knowledge Graphs into LLMs for Effective Zero-shot Hierarchical Text

在这里插入图片描述

文章主要内容总结

本文提出了一种名为KG-HTC的零样本层次文本分类方法,旨在解决层次文本分类(HTC)中数据标注成本高、标签空间大、长尾分布等问题。该方法通过将知识图谱(KG)与大型语言模型(LLM)结合,利用检索增强生成(RAG)框架从知识图谱中动态检索与输入文本语义相关的子图,并将其转换为结构化提示,引导LLM进行层次分类。实验在三个公开数据集(WoS、Dbpedia、Amazon)上表明,KG-HTC在严格零样本设置下显著优于基线方法,尤其在深层标签分类中表现更佳。

文章创新点

  1. 知识图谱与LLM的融合架构
    提出KG-HTC框架,将层次标签表示为有向无环图(DAG)形式的知识图谱,通过余弦相似度检索相关子图,为LLM提供结构化语义上下文,增强其对层次标签语义的理解。

  2. 动态子图检索与提示生成
    设计基于RAG的子图检索算法,根据输入文本动态筛选高相关标签节点,生成从叶节

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值