ENHANCING HUMAN-LIKE RESPONSES IN LARGE LANGUAGE MODELS

提升大语言模型类人回复能力的研究

在这里插入图片描述

主要内容

  1. 研究背景与目的:大语言模型(LLMs)在自然语言处理方面取得进展,但回复往往正式、缺乏人情味。研究旨在提升LLMs回复的“类人性”,使AI交互更具对话性、亲和力和情感共鸣,同时不影响正式任务的准确性。
  2. 相关工作:多种研究致力于提升LLMs回复的类人特质,如强化学习从人类反馈(RLHF)、DialoGPT利用Reddit数据、Meena优化对话连贯性、LLM Roleplay框架基于角色交互生成对话等。该研究在此基础上,整合心理学见解、使用系统提示并采用直接偏好优化(DPO)技术。
  3. 数据准备:使用Llama 3 70B和405B模型,借鉴Self-Instruct方法创建合成数据集。通过精心设计系统提示,生成对话式问题、常识性问题,引导模型产生类人回复和正式回复,并将其分类。设置特定参数控制回复的多样性和创造性,利用Atlas Nomic Map可视化数据集,最终数据集包含10884个样本,涵盖256个主题 。
  4. 模型训练:运用低秩适应(LoRA)和DPO技术对Llama3-8B-Instruct、Qwen-2.5-7B-Instruct和Mistral-Nemo-Instruct-2407等模型进行训练,使用Axolotl框架和Weights and Biases跟踪实验,设置一系列超参数。训练过
### Llama-Factory Reward Model Overview In the context of machine learning frameworks, particularly within specialized models like those derived from LLaMA (Large Language Model Meta AI), a reward model plays an essential role in guiding and evaluating the performance of generated outputs during fine-tuning processes or reinforcement learning scenarios[^2]. The `llama-factory` project specifically aims at enhancing large language models such as LLaMA by incorporating additional capabilities through various mechanisms including but not limited to: - **Reward Modeling**: This involves training a separate neural network that learns to predict human preferences over pairs of responses given some input prompt. The goal is to provide feedback signals which can be used either directly for selecting better generations or indirectly via policy optimization methods. For implementing this functionality using popular libraries, one might consider leveraging PyTorch alongside Hugging Face's Transformers library as shown below: ```python from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments def create_reward_model(model_name="facebook/llama-2-13b"): # Load pre-trained sequence classification model based on LLaMA architecture reward_model = AutoModelForSequenceClassification.from_pretrained( model_name, num_labels=1 # Binary preference score output ) return reward_model ``` This code snippet demonstrates how to initialize a reward prediction model built upon the foundation laid out by LLaMA architectures while adapting it towards specific tasks requiring evaluation metrics beyond traditional loss functions.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值