Adapting Mental Health Prediction Tasks for Cross-lingual Learning via Meta-Training and In-context

本文是LLM系列文章,针对《Adapting Mental Health Prediction Tasks for Cross-lingual Learning via Meta-Training and In-context Learning with Large Language Model》的翻译。

通过元训练和大语言模型的情境学习调整跨语言学习的心理健康预测任务

摘要

及时识别对于有效处理抑郁症等心理健康疾病至关重要。然而,目前的研究未能充分解决从斯瓦希里语等低资源非洲语言的社交媒体数据中预测心理健康状况的问题。本研究介绍了两种不同的方法,即利用模型无关元学习和利用大型语言模型(LLM)来解决这一差距。实验在翻译成低资源语言的三个数据集上进行,并应用于四项心理健康任务,包括压力、抑郁、抑郁严重程度和自杀意念预测。我们首先应用了一个具有自我监督的元学习模型,这改进了模型初始化,以实现快速适应和跨语言迁移。结果表明,我们的元训练模型的性能明显优于标准微调方法,在宏观F1得分方面优于基线微调,分别比XLM-R和mBERT高出18%和0.8%。同时,我们利用LLM的情境学习能力,通过分析不同的跨语言提示方法,评估其在斯瓦希里语心理健康预测任务中的表现准确性。我们的分析表明,斯瓦希里语提示比跨语言提示表现更好,但不如英语提示。我们的研究结果表明,通过精心制作的带有示例和说明的提示模板,可以通过跨语言迁移来实现因纽特人的学习。

1 引言

2 相关工作

3 方法

4 数据集

5 实验

6 结果与分析

7 结论

我们的研究采用了一种双重方法,对低资源语言中心理健康预测的跨语言迁移和适应进行了研究。我们研究了一种与模型无关的元学习方法,并在大型语言模型的上下文学习中进行了研究。我

### Skeleton-Based Action Recognition Using Adaptive Cross-Form Learning In the realm of skeleton-based action recognition, adaptive cross-form learning represents a sophisticated approach that integrates multiple modalities to enhance performance. This method leverages both spatial and temporal information from skeletal data while adapting dynamically across different forms or representations. The core concept involves constructing an end-to-end trainable framework where features extracted from joint coordinates are transformed into various intermediate representations such as graphs or sequences[^1]. These diverse forms capture distinct aspects of human motion patterns effectively: - **Graph Representation**: Models interactions between joints by treating them as nodes connected via edges representing bones. - **Sequence Modeling**: Treats each frame's pose estimation results as elements within time-series data suitable for recurrent neural networks (RNN). Adaptive mechanisms allow seamless switching among these forms based on their suitability at different stages during training/inference processes. Specifically designed modules learn when and how much weight should be assigned to specific transformations ensuring optimal utilization of available cues without overfitting any single modality. For implementation purposes, one might consider employing Graph Convolutional Networks (GCNs) alongside Long Short-Term Memory units (LSTMs). GCNs excel in capturing structural dependencies present within graph structures derived from skeletons; meanwhile LSTMs handle sequential modeling tasks efficiently handling long-range dependencies found along video frames' timelines. ```python import torch.nn as nn class AdaptiveCrossFormModule(nn.Module): def __init__(self): super(AdaptiveCrossFormModule, self).__init__() # Define components responsible for processing individual form types here def forward(self, input_data): # Implement logic determining which transformation path(s) will process 'input_data' pass def train_model(model, dataset_loader): criterion = nn.CrossEntropyLoss() optimizer = ... # Initialize appropriate optimization algorithm for epoch in range(num_epochs): running_loss = 0.0 for inputs, labels in dataset_loader: outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值