The Fine-Grained Complexity of Gradient Computation for Training Large Language Models

本文深入探讨了训练大型语言模型(LLM)时梯度计算的复杂性,提供了一种新的算法,并分析了不同参数情况下训练的时间复杂度。在参数适当时,提出近线性时间算法,而在参数较大时,揭示了快速算法的局限性,为LLM设计和优化提供了指导。

本文是LLM系列文章,针对《The Fine-Grained Complexity of Gradient Computation for Training Large Language Models》的翻译。

训练大型语言模型的梯度计算的精细复杂度

摘要

大型语言模型(LLM)在过去几年中做出了重要贡献。要训练LLM,需要交替运行“正向”计算和“反向”计算。前向计算可以看作注意力函数评估,而后向计算可以看成梯度计算。在Alman和Song之前的工作中,已经证明了在某些参数状态下,前向步骤可以在几乎线性的时间内执行,但在剩余的参数状态下没有真正的次二次时间算法,除非流行的假设SETH是假的。在这项工作中,我们对计算一层注意力网络的损失函数梯度这一看似困难的问题,以及LLM训练的整个过程,给出了几乎相同的结果。这完全体现了LLM训练每一步的细粒度复杂性。

1 引言

2 相关工作

3 前言

4 一般上限的证明草图

5 一般下限

6 结论

我们的结果对训练LLM所需的运行时间进行了完整的细粒度分析。我们证明了存在一个取决于参数B的阈值,即参数矩阵项的大小。在B很小的情况下,通过使用我们的新算法进行反向计算,可以实现LLM训练的近似线性时间算法。在B很大的情况下,我们的算法不仅不适用,而且我们表明不可能设计出一个非常快的算法(除非在可满足性算法方面取得突破,从而反驳流行的SETH

Object detection in remote sensing images is a challenging task due to the complex backgrounds, diverse object shapes and sizes, and varying imaging conditions. To address these challenges, fine-grained feature enhancement can be employed to improve object detection accuracy. Fine-grained feature enhancement is a technique that extracts and enhances features at multiple scales and resolutions to capture fine details of objects. This technique includes two main steps: feature extraction and feature enhancement. In the feature extraction step, convolutional neural networks (CNNs) are used to extract features from the input image. The extracted features are then fed into a feature enhancement module, which enhances the features by incorporating contextual information and fine-grained details. The feature enhancement module employs a multi-scale feature fusion technique to combine features at different scales and resolutions. This technique helps to capture fine details of objects and improve the accuracy of object detection. To evaluate the effectiveness of fine-grained feature enhancement for object detection in remote sensing images, experiments were conducted on two datasets: the NWPU-RESISC45 dataset and the DOTA dataset. The experimental results demonstrate that fine-grained feature enhancement can significantly improve the accuracy of object detection in remote sensing images. The proposed method outperforms state-of-the-art object detection methods on both datasets. In conclusion, fine-grained feature enhancement is an effective technique to improve the accuracy of object detection in remote sensing images. This technique can be applied to a wide range of applications, such as urban planning, disaster management, and environmental monitoring.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值