MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases

本文探讨了如何优化参数小于10亿的大型语言模型(LLM),以适应移动设备使用。研究发现,模型架构比参数量更重要,提出了MobileLLM模型,通过深度学习和权重共享等技术提高了性能。MobileLLM在多项任务上超越了现有小规模模型,证明了其在有限资源设备上的潜力。

本文是LLM系列文章,针对《MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases》的翻译。

MobileLLM:优化设备上用例的十亿参数语言模型

摘要

本文解决了移动设备上对高效大型语言模型(LLM)日益增长的需求,这是由于云成本和延迟问题的增加。我们专注于设计参数少于10亿的高质量LLM,这是移动部署的实用选择。与强调数据和参数量在决定模型质量中的关键作用的普遍观点相反,我们的研究强调了模型架构对十亿级LLM的重要性。利用深度和精简架构,再加上嵌入共享和分组查询注意力机制,我们建立了一个强大的基线网络,称为MobileLLM,与之前的125M/350M最先进的模型相比,其准确率显著提高了2.7%/4.3%。此外,我们提出了一种立即分块权重共享方法,不增加模型大小,只增加边际延迟开销。所得模型表示为MobileLLM-LS,与MobileLLM125M/350M相比,精度进一步提高了0.7%/0.8%。此外,MobileLLM模型系列在聊天基准测试中与之前的十亿级以下模型相比有了显著改进,并在API调用任务中证明了与LLaMA-v2 7B非常接近的正确性,突出了小型模型在常见设备上使用情况下的能力。

1 引言

2 改进十亿级以下LLM设计

3 实验

4 相关工作

5 结论

这项研究的重点是为设备上的应用优化十亿以下规模的模型。我们的研究结果表明,对于较小的模型,优先考虑深度而不是宽度可以提高模型性能。此外,通过利用先进的权重共享技术,包括嵌入共享、分组查询注意力和逐块权重共享,我们在存储受限的场景中显著提高了权重利用率。与之前的SoTA方法相比,被称

### Shallow-UWnet Compressed Models for Underwater Image Enhancement Details and Implementation #### Model Architecture Overview Shallow-UWnet is a lightweight neural network designed specifically to address the challenges associated with water under image enhancement while maintaining high performance efficiency. The model achieves this through significant parameter reduction, requiring only one-eighteenth of trainable parameters compared to traditional deep learning models[^2]. This design choice not only reduces computational overhead but also enhances testing speed by up to ten times. #### Key Features The architecture of Shallow-UWnet incorporates several key features that contribute to its effectiveness: - **Parameter Efficiency**: By reducing the number of layers and optimizing each layer's structure, Shallow-UWnet minimizes the total amount of required training parameters. - **Enhanced Speed**: Optimized convolution operations allow faster inference without compromising on accuracy or quality of output images. - **Generalizability Across Datasets**: Despite being shallow, the model demonstrates strong generalization capabilities across different datasets containing various types of degraded underwater imagery. #### Implementation Example Below is an illustrative Python code snippet demonstrating how such a model might be implemented using TensorFlow/Keras framework: ```python import tensorflow as tf from tensorflow.keras import layers, models def create_shallow_uwnet(input_shape=(None, None, 3)): inputs = layers.Input(shape=input_shape) # Initial Convolution Layer conv1 = layers.Conv2D(64, (7, 7), padding='same', activation='relu')(inputs) # Depthwise Separable Convolutions for Efficient Processing depth_sep_conv = layers.DepthwiseConv2D((3, 3), padding='same', use_bias=False)(conv1) pointwise_conv = layers.Conv2D(64, (1, 1), padding='same', activation='relu')(depth_sep_conv) # Output Layer outputs = layers.Conv2D(3, (1, 1), activation='sigmoid')(pointwise_conv) return models.Model(inputs=inputs, outputs=outputs) model = create_shallow_uwnet() model.compile(optimizer='adam', loss='mse') ``` This simplified version showcases basic components like initial large kernel size convolution followed by efficient separable convolutions which help reduce overall complexity yet retain essential spatial information necessary for effective denoising and color correction tasks specific to underwater environments.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值