Knowledge Graph Enhanced Large Language Model Editing

828 篇文章

已下架不支持订阅

本文提出GLAME方法,通过知识图谱增强模块揭示LLM内部的知识变化,并用图知识编辑模块将结构化知识集成到模型编辑中,提高编辑后LLM的泛化能力。

本文是LLM系列文章,针对《Knowledge Graph Enhanced Large Language Model Editing》的翻译。

知识图谱增强的大型语言模型编辑

摘要

大型语言模型(LLM)是推进自然语言处理(NLP)任务的关键,但其功效受到不准确和过时知识的阻碍。模型编辑是解决这些挑战的一个很有前途的解决方案。然而,现有的编辑方法难以跟踪和整合与编辑相关的知识变化,这限制了编辑后LLM在处理编辑知识时的泛化能力。为了解决这些问题,我们提出了一种新的模型编辑方法,即GLAME,该方法利用知识图谱来增强LLM编辑。具体来说,我们首先利用知识图谱增强模块来揭示由于编辑而发生变化的相关知识,从而获得其在LLM中的内部表示。这种方法允许LLM内的知识变化通过外部图结构反映出来。随后,我们设计了一个基于图的知识编辑模块,将结构化知识集成到模型编辑中。这确保了更新的参数不仅反映了对编辑的知识的修改,而且反映了由编辑过程引起的其他相关知识的变化。在GPT-J和GPT-2XL上进行的综合实验表明,GLAME在使用编辑知识方面显著提高了编辑后LLM的泛化能力。

1 引言

2 相关工作

3 前言

4 方法

5 实验

6 结论

在本文中,我们提出了一种用于大型语言模型编辑的新方法GLAME。GLAME利用知识图谱增强模块,通过构建外部图来捕捉由于编辑而导致的相关知识的变化。接下来,我们介绍了一个基于图的知识编辑模块,该模块利用关系图神经网络将构建的子图中的新知识关联无缝集成到LLM的参数编辑框架中。在两个LLM上的实验结果和广泛的分析证明

KnowledgeNavigator: Leveraging Large Language Models for Enhanced Reasoning over Knowledge Graph》聚焦于利用大型语言模型增强知识图谱推理。大型语言模型(LLM)在复杂推理和问答(QA)任务中的知识限制方面存在局限性,而KnowledgeNavigator框架利用知识图谱中的外部知识来增强LLM推理[^4]。 该框架主要包括三个阶段:问题分析、知识检索和推理。在问题分析阶段,预测推理跳数,生成相似的问题,以增强推理逻辑挖掘;知识检索阶段,根据给定的问题和大语言模型指导,从知识图谱中迭代检索和过滤相关知识;推理阶段,将检索到的知识转化为对LLM有效的提示,以此增强其推理能力。并且该框架在KGQA基准测试中优于以前的知识图谱增强LLM方法[^4]。 ```python # 以下为简单示意框架各阶段伪代码 # 问题分析 def question_analysis(question): # 预测推理跳数 hop_count = predict_hop_count(question) # 生成相似问题 similar_questions = generate_similar_questions(question) return hop_count, similar_questions # 知识检索 def knowledge_retrieval(question, llm_guide, knowledge_graph): relevant_knowledge = [] # 迭代检索和过滤相关知识 for step in range(max_steps): new_knowledge = retrieve_and_filter(question, llm_guide, knowledge_graph) relevant_knowledge.extend(new_knowledge) return relevant_knowledge # 推理 def reasoning(relevant_knowledge, llm): prompt = convert_to_prompt(relevant_knowledge) result = llm.generate(prompt) return result ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值