Bridging Causal Discovery and Large Language Models

828 篇文章

已下架不支持订阅

本文调查了大型语言模型(LLM)如GPT-4在因果发现(CD)任务中的应用,分析了LLM增强传统CD方法的潜力与挑战,并提出了未来的研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Bridging Causal Discovery and Large Language Models: A Comprehensive Survey of Integrative Approaches and Future Directions》的翻译。

连接因果发现和大型语言模型:集成方法和未来方向的综合综述

摘要

因果发现(CD)和大型语言模型(LLM)代表了两个新兴的研究领域,对人工智能具有重要意义。尽管它们有着不同的起源——CD专注于从数据中揭示因果关系,LLM专注于处理和生成类人文本——但这些领域的融合为理解复杂系统提供了新的见解和方法。本文对LLM(如GPT-4)与CD任务的集成进行了全面的调查。我们系统地回顾和比较了利用LLM执行各种CD任务的现有方法,并强调了它们对元数据和自然语言的创新使用,以推断因果结构。我们的分析揭示了LLM在增强传统CD方法和作为一名不完美的专家方面的优势和潜力,以及当前实践中固有的挑战和局限性。此外,我们发现了文献中的空白,并提出了未来的研究方向,旨在充分利用LLM在因果关系研究中的潜力。据我们所知,这是第一次对LLM和CD之间的协同作用进行统一和详细的研究,为该领域的未来发展奠定了基础。

1 引言

2 背景

3 问题定义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值