Large Language Models for Time Series: A Survey

828 篇文章

已下架不支持订阅

本文是LLM系列文章,针对《Large Language Models for Time Series: A Survey》的翻译。

摘要

大型语言模型在自然语言处理和计算机视觉等领域有着重要的应用。LLM超越了文本、图像和图形,在分析时间序列数据方面具有巨大潜力,有利于气候、物联网、医疗保健、交通、音频和金融等领域。这篇调查论文对利用LLM的力量进行时间序列分析所采用的各种方法进行了深入的探索和详细的分类。我们解决了弥合LLM的原始文本数据训练与时间序列数据的数值性质之间的差距这一固有挑战,并探索了将LLM中的知识迁移和提取到数值时间序列分析的策略。我们详细介绍了各种方法,包括(1)LLM的直接提示,(2)时间序列量化,(3)对齐技术,(4)将视觉模态用作桥接机制,以及(5)LLM与工具的组合。此外,这项调查全面概述了现有的多模式时间序列和文本数据集,并深入探讨了这一新兴领域的挑战和未来机遇。我们维护一个最新的Github存储库,其中包括调查中讨论的所有论文和数据集。

1 引言

2 背景和问题定义

3 分类

4 分类学中的比较

5 多模态数据集

6 挑战与未来方向

7 结论

我们提出了第一项调查,系统地分析了从大型语言模型迁移知识用于数字时间序列分析的分类:直接提示、时间序列量化、对齐、使用视觉模态连接文

《KnowledgeNavigator: Leveraging Large Language Models for Enhanced Reasoning over Knowledge Graph》聚焦于利用大型语言模型增强知识图谱推理。大型语言模型(LLM)在复杂推理和问答(QA)任务中的知识限制方面存在局限性,而KnowledgeNavigator框架利用知识图谱中的外部知识来增强LLM推理[^4]。 该框架主要包括三个阶段:问题分析、知识检索和推理。在问题分析阶段,预测推理跳数,生成相似的问题,以增强推理逻辑挖掘;知识检索阶段,根据给定的问题和大语言模型指导,从知识图谱中迭代检索和过滤相关知识;推理阶段,将检索到的知识转化为对LLM有效的提示,以此增强其推理能力。并且该框架在KGQA基准测试中优于以前的知识图谱增强LLM方法[^4]。 ```python # 以下为简单示意框架各阶段伪代码 # 问题分析 def question_analysis(question): # 预测推理跳数 hop_count = predict_hop_count(question) # 生成相似问题 similar_questions = generate_similar_questions(question) return hop_count, similar_questions # 知识检索 def knowledge_retrieval(question, llm_guide, knowledge_graph): relevant_knowledge = [] # 迭代检索和过滤相关知识 for step in range(max_steps): new_knowledge = retrieve_and_filter(question, llm_guide, knowledge_graph) relevant_knowledge.extend(new_knowledge) return relevant_knowledge # 推理 def reasoning(relevant_knowledge, llm): prompt = convert_to_prompt(relevant_knowledge) result = llm.generate(prompt) return result ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值