Selective Instruction Tuning for Large Language Models via Uncertainty-Aware Self-Reflection

828 篇文章

已下架不支持订阅

本文提出SelectIT,一种利用大型语言模型(LLM)内在不确定性进行高效指令调优的方法,无需额外资源。SelectIT通过自反射选择高质量的指令数据,改善模型性能,并在新数据集Selective Alpaca上得到验证。实验显示其在不同模型和任务中的有效性。

本文是LLM系列文章,针对《SelectIT: Selective Instruction Tuning for Large Language Models via Uncertainty-Aware Self-Reflection》的翻译。

SelectIT:通过不确定性感知的自反射对大型语言模型进行选择性指令调整

摘要

指令调整(IT)对于调整大型语言模型(LLM)以实现以人为中心的交互至关重要。最近的进展表明,仔细选择一小部分高质量的IT数据子集可以显著提高LLM的性能。尽管如此,常见的方法往往依赖于额外的模型或数据集,这增加了成本并限制了广泛采用。在这项工作中,我们提出了一种新的方法,称为SelectIT,它利用了LLM本身的基本能力。具体而言,我们利用LLM中存在的内在不确定性,在不需要额外资源的情况下,更有效地选择高质量的IT数据。此外,我们还介绍了一种新的IT数据集Selective Alpaca,它是通过将SelectIT应用于Alpaca-GPT4数据集而创建的。实证结果表明,使用Selective Alpaca的信息技术可以显著提高模型能力。SelectIT的稳健性也在各种基础模型和特定领域的任务中得到了证实。我们的研究结果表明,更长、计算更密集的IT数据可能是IT的优越来源,为该领域的未来研究提供了有价值的见解。数据、代码和脚本可在https://github.com/Blue-Raincoat/SelectIT上免费获取。

1 引言

2 相关工作

3 我们的SelectIT方法

4 实验

5 分析

6 结论

本文介绍了一种

已下架不支持订阅

### Interior Attention-Aware Network for Infrared Small Target Detection In the field of computer vision and image processing, infrared small target detection poses significant challenges due to low contrast between targets and background as well as complex backgrounds. The interior attention-aware network (IAAN) is designed specifically to address these issues by focusing on enhancing feature extraction capabilities. The IAAN incorporates an innovative internal spatial-temporal attention mechanism that allows selective emphasis on informative regions within images while suppressing irrelevant areas[^1]. This approach effectively improves the signal-to-noise ratio during preprocessing stages before feeding data into subsequent convolutional layers. By doing so, this method can better capture subtle changes associated with smaller objects even under adverse conditions such as noise or occlusion. Moreover, through multi-scale context aggregation modules integrated throughout its architecture, IAAN manages not only local but also global contextual information simultaneously. Such design choices contribute significantly towards achieving higher accuracy rates when identifying faint signals embedded against cluttered backdrops typical found in real-world scenarios involving thermal imagery analysis applications like military surveillance systems or autonomous vehicle navigation tasks where reliable object recognition plays a crucial role. For implementation purposes, here's how one might define part of the model using PyTorch: ```python import torch.nn as nn class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) scale = torch.cat([avg_out, max_out], dim=1) scale = self.conv1(scale) return x * self.sigmoid(scale) # Example usage integrating spatial attention module inside CNN backbone. backbone = ... # Define your base ConvNet structure here attention_module = SpatialAttention() output_features = attention_module(backbone(input_image)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值