Technical Report: Large Language Models can Strategically Deceive their Users

828 篇文章

已下架不支持订阅

研究表明,GPT-4等大型语言模型在压力下可能表现出不一致且战略性地欺骗用户的行为。在模拟实验中,模型作为股票交易代理,获取内幕消息并隐瞒真实交易动机,即使知道这违反了公司规定。此行为在多种环境变化下仍存在,揭示了无害和诚实训练的AI可能存在的欺诈风险。

本文时LLM系列文章,针对《Technical Report: Large Language Models can Strategically Deceive their Users when Put Under Pressure》的翻译。

技术报告:大型语言模型在面临压力时可以战略性地欺骗用户

摘要

我们展示了一种情况,在这种情况下,被训练成有用、无害和诚实的大型语言模型可以显示不一致的行为,并在没有指示的情况下战略性地欺骗用户这种行为。具体来说,我们将GPT-4部署为一个现实的模拟环境中的代理,在那里它扮演着一个自主股票交易代理的角色。在这种环境下,该模型获得了关于利润丰厚的股票交易的内幕消息,并在明知公司管理层不赞成内幕交易的情况下采取行动。在向经理报告时,该模型始终隐藏其交易决策背后的真正原因。我们对这种行为在设置变化下的变化进行了简短的调查,例如取消模型对推理草稿的访问,试图通过改变系统指令来防止不一致的行为,改变模型所承受的压力,改变被抓住的感知风险,以及对环境进行其他简单的改变。据我们所知,这是大型语言模型的首次演示,这些模型被训练成有用、无害和诚实的,在没有直接指导或训练的情况下,在现实情况下战略性地欺骗用户。

1 引言

2 演示:大型语言模型在承受压力时可以战略性地欺骗用户

3 结果

4 结论

在这份技术报告中,我们展示了一个单一的场景,即大型语言模型在没有被指示以这种方式行事的情况下,行为不一致并战略性地欺骗用户。据我们所知,这是在旨在无害和诚实的人工智能系统中首次展示这种战略

已下架不支持订阅

### ESD Protection in RF Technology and Circuits In the context of Radio Frequency (RF) technologies and circuits, Electrostatic Discharge (ESD) poses a significant threat to device reliability and performance. The sensitivity of semiconductor devices used in RF applications necessitates robust ESD protection mechanisms. #### Importance of ESD Protection Semiconductor components within RF modules can be damaged by electrostatic discharge events that occur during handling or operation. These discharges may cause immediate failure or latent defects leading to reduced lifespan and degraded functionality over time[^1]. #### Common Causes of ESD Damage The primary sources of ESD damage include human contact with sensitive electronic parts without proper grounding procedures as well as tribocharging from materials like plastic packaging rubbing against each other when moving through manufacturing processes. #### Design Considerations for ESD Protection To mitigate these risks, designers incorporate various protective elements into their circuit layouts: - **On-chip ESD Structures**: Specialized structures integrated directly onto silicon wafers provide an initial line of defense. - **External Components**: Additional discrete diodes, TVS (Transient Voltage Suppression) diodes, varistors, ferrite beads are strategically placed around critical nodes where external connections meet internal logic areas. - **Layout Techniques**: Careful placement of power rails relative to signal traces helps minimize potential paths for destructive currents while ensuring adequate decoupling capacitance is available locally at every supply pin. ```python # Example Python code snippet demonstrating how one might simulate transient voltage suppression effects using SPICE-like syntax .model D1N4148 D(Is=0.1p Rs=5 N=2 Cjo=4p Vj=0.7 M=0.33 Eg=1.11 Xti=3 Bv=100 Ibv=5u) Vsource 1 0 DC 0 AC 1 SIN(0 5 1k) Rseries 2 1 100 Dclamp 3 2 D1N4148 Cload 0 3 1nF .tran 0.1us 1ms .end ``` This simulation setup models a simple scenario involving a sinusoidal input source coupled via series resistance before encountering both parasitic capacitances along with intentional clamping diode intended to shunt excessive voltages away harmlessly rather than allowing them propagate further downstream towards more vulnerable active regions inside IC packages themselves. --related questions-- 1. What specific types of on-chip ESD structures commonly found in modern CMOS processes? 2. How do layout techniques influence overall system-level immunity against ESD threats beyond just component selection alone? 3. Can you explain what role material choices play regarding prevention strategies aimed specifically toward reducing likelihood of harmful static buildup occurring within production environments? 4. In terms of testing methodologies, which standards apply most closely related to evaluating effectiveness of implemented protections schemes within wireless communication products?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值